• Title/Summary/Keyword: Integrated Generator

Search Result 279, Processing Time 0.031 seconds

RPFuzzer: A Framework for Discovering Router Protocols Vulnerabilities Based on Fuzzing

  • Wang, Zhiqiang;Zhang, Yuqing;Liu, Qixu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1989-2009
    • /
    • 2013
  • How to discover router vulnerabilities effectively and automatically is a critical problem to ensure network and information security. Previous research on router security is mostly about the technology of exploiting known flaws of routers. Fuzzing is a famous automated vulnerability finding technology; however, traditional Fuzzing tools are designed for testing network applications or other software. These tools are not or partly not suitable for testing routers. This paper designs a framework of discovering router protocol vulnerabilities, and proposes a mathematical model Two-stage Fuzzing Test Cases Generator(TFTCG) that improves previous methods to generate test cases. We have developed a tool called RPFuzzer based on TFTCG. RPFuzzer monitors routers by sending normal packets, keeping watch on CPU utilization and checking system logs, which can detect DoS, router reboot and so on. RPFuzzer' debugger based on modified Dynamips, which can record register values when an exception occurs. Finally, we experiment on the SNMP protocol, find 8 vulnerabilities, of which there are five unreleased vulnerabilities. The experiment has proved the effectiveness of RPFuzzer.

적외선 검출기를 위한 액체 질소 온도 동작 밴드갭 기준회로의 설계

  • Kim, Youn-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.251-256
    • /
    • 2004
  • A stable reference voltage generator is necessary to the infrared image signal readout circuit(ROIC) to improve noise characteristics in comparison with signals originated from infrared devices, that is, to gain good images. In this study, bandgap reference circuit operating at cryogenic temperature of 77K for Infrared image ROIC(readout integrated circuit) was propose. Most of bandgap reference circuits which are presented so far operate at room temperature, and they are not suitable for infrared image ROIC operating at liquid nitrogen temperature, 77K. To design bandgap reference circuit operating at cryogenic temperature, the parameter characteristics of used devices as temperature change are seen, and then bandgap reference circuit is proposed with considering such characteristics. It demonstrates practical use possibility through taking measurements and estimations.

  • PDF

Integrated Information Retrieval with Metadata Interface for Heterogeneous Distributed XML Documents (메타정보 인터페이스를 이용한 이질 구조 분석 XML문서 통합 검색)

  • 류성준;황재문;김태훈;남영광
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1505-1518
    • /
    • 2004
  • We propose an extremely light DDXMI approach for semi-automated integration of both structurally and semantically heterogeneous distributed XML documents. In the proposed prototype, a DDXMI(Distributed Documents XML Metadata Interface) is defined and a user interface generator is developed. The prototype takes sources' DTDs as inputs and generates a friendly graphical user interface for the application users. The user can easily describe the semantic mapping between the integrated virtual database DTD and sources' DTDs through assigning index numbers and specifying associated function names so that the DDXMI based on the mappings is automatically generated. Quilt is selected as the XML query language which processes user queries according to the DDXMI. It is assumed that the application users know what they want from the different sources, that is, they have their own integrated database schema in their mind, and know the semantics of the involved XML databases. A small-size global DTD and a mid-size global DTB are generated to verify the rluery generation and retrieval results with 3 XML document databases, that is, Master/ph.D thesis, research reports, and journal databases. The system has been developed with JavaCC and Java Servelet.

A collaborative simulation in shipbuilding and the offshore installation based on the integration of the dynamic analysis, virtual reality, and control devices

  • Li, Xing;Roh, Myung-Il;Ham, Seung-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.699-722
    • /
    • 2019
  • It is difficult to observe the potential risks of lifting or turn-over operations in the early stages before a real operation. Therefore, many dynamic simulations have been designed to predict the risks and to reduce the possibility of accidents. These simulations, however, have usually been performed for predetermined and fixed scenarios, so they do not reflect the real-time control of an operator that is one of the most important influential factors in an operation; additionally, lifting or turn-over operations should be a collaboration involving more than two operators. Therefore, this study presents an integrated method for a collaborative simulation that allows multiple workers to operate together in the virtual world. The proposed method is composed of four components. The first component is a dynamic analysis that is based on multibody-system dynamics. The second component is VR (virtual reality) for the generation of realistic views for the operators. The third component comprises the control devices and the scenario generator to handle the crane in the virtual environment. Lastly, the fourth component is the HLA (high-level architecture)-based integrated simulation interface for the convenient and efficient exchange of the data through the middleware. To show the applicability of the proposed method, it has been applied to a block turn-over simulation for which one floating crane and two crawler cranes were used, and an offshore module installation for which a DCR (dual-crane rig) was used. In conclusion, the execution of the proposed method of this study is successful regarding the above two applications for which multiple workers were involved.

High Conversion Gain Millimeter-wave Monolithic Subharmonic Mixer With Cascode Harmonic Generator (Cascode형 하모닉 발생기를 이용한 고변환이득 특성의 밀리미터파 단일칩 Subharmonic 믹서)

  • An, Dan;Kim, Sung-Chan;Sul, Woo-Suk;Han, Hyo-Jong;Lee, Han-Shin;Uhm, Won-Young;Park, Hyung-Moo;Kim, Sam-Dong;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.5
    • /
    • pp.197-203
    • /
    • 2003
  • In this paper, we have presented millimeter-wave high conversion gain quadruple subharmonic mixers adopting the cascode harmonic generator The subharmonic mixers were successfully integrated by using 0.1 ${\mu}{\textrm}{m}$ GaAs pseudomorphic HEMTs(PHEMTs) and coplanar waveguide(CPW) structures. Measured output of 1st, 2nd and 4th harmonics of the fabricated cascode 4th harmonic generator are -21.42 dBm, -32.65 dBm and -13.45 dBm, respectively, for an input power of 10 dBm at 14.5 GHz. We showed that the highest conversion gain of 3.4 dB has obtained thus far at a LO power of 13 dBm from the fabricated subharmonic mixers. The millimeter-wave subharmonic mixer also ensure a high degree of isolation showing -53.6 dB in the LO-to-IF and -46.2 dB in the LO-to-RF, respectively, at a frequency of 14.5 GHz. The high conversion gain achieved in this work is the first report among the millimeter-wave subharmonic mixers.

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.

Application of Dynamic Model for Steam Turbine and its Parameter Estimation in a Fossil Fired Power Plant

  • Choi, Inkyu;Woo, Joohee;Kim, Byoungchul;Son, Gihun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.409-413
    • /
    • 2016
  • The 500 MW rated steam turbine model in coal fired power plant is developed to be used for validation and verification of controller rather than for the education of operator. The valve, steam turbine, reheater and generator are modeled and integrated into the simulator. And the data from the plant heat balance diagram are used for estimation of the model parameters together with actual operating data. It is found that the outputs of model such as pressure, temperature and speed are similar to the operating ones. So, it is expected that the developed model will play a very big role in controller development.

Optimal Design of Field-Excitation Flux-Switching Synchronous Machine for ISG Application (계자권선형 12슬롯-10극 자속 역전식 동기 전동기의 최적 설계)

  • Koo, Bon-Kil;Jung, Il-Su;Nam, Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.23-24
    • /
    • 2013
  • In recent years, ISG (Integrated Starter and Generator) system receives a great attention for electric electrification of normal gasoline vehicle. As a cost-effect machine design, an ISG without a permanent magnet is considered. A 12slot-10pole field-excitation flux-switching synchronous machine (FEFSSM) is designed and analyzed via JMAG. The active parts such as the field excitation coil and armature coil are located on the stator. The rotor part consisting of single piece iron makes it more robust and suitable to apply for high speed motor drive system application coupled with reduction belt. The design target is the motor with a maximum torque of 40Nm, a maximum power of 10kW and a maximum speed of 14000 rpm. In this paper, design optimization method is proposed for high torque capability.

  • PDF

A Study on Reduction of Vibration and Noise of ISG for Hybrid Electric Vehicle (하이브리드 전기 자동차용 ISG의 진동 및 소음 개선에 관한 연구)

  • Jung, Jae-Woo;Jeon, Seong-Min;Kim, Jong-Hyun;Yoon, Jae-Seub;Kim, Do-Jin;Hong, Jung-Pyo;Kim, Hyun;Kim, Ki-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.796-797
    • /
    • 2011
  • 하이브리드 자동차의 Integrated Starter & Generator (ISG)는 기동 시 높은 토크를 발생시키면서 진동과 소음을 동반한다. 이러한 진동 및 소음은 차량의 품질 확보를 위하여 최소화 시켜야 할 필요가 있다. 본 논문에서는 매입형 영구자석 동기 전동기로 설계된 ISG의 진동 및 소음 저감에 관한 연구에 대하여 다룬다. ISG의 진동 및 소음 저감을 위하여 회전자 코어의 형상 최적설계, 슬롯 수 변경설계 그리고 회전자의 step skew를 적용시켜 각각의 설계방법이 ISG의 진동 및 소음에 미치는 영향을 해석과 실험을 통해 검증하였다.

  • PDF

A Model of the Operator Cognitive Behaviors During the Steam Generator Tube Rupture Accident at a Nuclear Power Plant

  • Mun, J.H.;Kang, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.467-481
    • /
    • 1996
  • An integrated framework of modeling the human operator cognitive behavior during nuclear power plant accident scenarios is presented. It incorporates both plant and operator models. The basic structure of the operator model is similar to that of existing cognitive models, however, this model differs from those existing ones largely in too aspects. First, using frame and membership function, the pattern matching behavior, which is identified as the dominant cognitive process of operators responding to an accident sequence, is explicitly implemented in this model. Second, the non-task-related human cognitive activities like effect of stress and cognitive biases such as confirmation bias and availability bias, are also considered. A computer code, OPEC is assembled to simulate this framework and is actually applied to an SGTR sequence, and the resultant simulated behaviors of operator are obtained.

  • PDF