• Title/Summary/Keyword: Integrated DEFinition Method (IDEF0)

Search Result 3, Processing Time 0.018 seconds

Corporate Reengineering for MRPII Implementation: Via a Hierarchical Modelling Approach

  • Chan, Jimmy S.F.;Chau K.Y.;Chan, Y.K.
    • International Journal of Quality Innovation
    • /
    • v.6 no.2
    • /
    • pp.59-89
    • /
    • 2005
  • Manufacturing Resources Planning (MRPII) is one kind of manufacturing information system that can help manufacturing companies gain competitive advantages. It is estimated that more than one hundred MRPII systems are available in the market, many of them are mature enough to solve most operational issues in accordance with users' requirements. More often than not, many of these systems provide more functions than a company expects. Manufacturing companies worldwide have attempted to implement these MRPII systems, however, many companies experienced failure (Turbide, 1996) due to managerial rather than technical issues. The authors propose an approach utilising a roadmap to integrate BPR and the MRPII implementation in order to overcome this difficulty. A detail road map is developed to guide this implementation, which is designed using a hierarchical analysis technique known as Integrated DEFinition Method (IDEF). IDEF is a systematic manufacturing management and integration-modeling tool. The proposed approach is implemented and illustrated using a reference company and the results indicated that 66% reduction in errors for maintaining the bills of materials system; 99% reduction in time to carry out material requirement planning; and 70% reduction in time previously taken for non-productive discussions.

Study on Identification Procedure for Unidentified Underwater Targets Using Small ROV Based on IDEF Method (소형 ROV를 이용한 IDEF0 기반의 수중 미확인 물체 식별절차에 관한 연구)

  • Baek, Hyuk;Jun, Bong-Huan;Yoon, Suk-Min;Noh, Myounggyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.289-299
    • /
    • 2019
  • Various sizes of ROVs are being utilized in offshore industrial, scientific, and military applications all around the world. Because of innovative developments in science and technology, image acquisition devices such as sonar devices and cameras have been reduced in size and their performance has been improved. Thus, we can expect better accuracy and higher resolution even in the case of exploration using a small ROV. The purpose of this paper is to prepare a standard procedure for the identification of unidentified hazardous materials found during the National Oceanographic Survey. In this paper, we propose an IDEF (Integrated DEFinition) method modeling technique to identify unidentified targets using a small ROV. In accordance with the proposed procedure, an ROV survey was carried out on target No.16 with a four-ton-class fishing boat as a support vessel on September 18th of 2018 in the sea near Daebu Island. Unidentified targets, which were not known by the multi-beam data obtained from the ship, could be identified as concrete pipes by analyzing the HD camera and high-resolution sonar images acquired by the ROV. The whole proposed procedure could be verified, and the survey with the small ROV required about 10 days to identify the target in one place.

A PETRI NET-BASED CELL CONTROLLER FOR A FLEXIBLE MANUFACTURING SYSTEM

  • Janssens, Gerrit-K.;Tabucanon, Mario-T.
    • Management Science and Financial Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-38
    • /
    • 1997
  • In a flexible manufacturing system, a cell controller is able to identify and evaluate a number of alternative decisions to meet the objectives set by the factory level controller. In this paper, a Petri net-based cell controller is presented to accomplish this task. A static model is developed by using the Integrated Computer Aided Definition(IDEF0) method to represent clear functional relationships among the objects of the system. Based on the static model, two Petri net models are developed for the physical part flow and for the information flow. Multiple decision alternatives are generated from the physical part flow model and are synchronized with the information flow model for execution of the selected alternative.

  • PDF