• Title/Summary/Keyword: Integrated Chamber

Search Result 96, Processing Time 0.028 seconds

Structural Analysis and Manufacturing of the Integrated System using Ion Beam (이온 빔 이용 통합시스템의 제작 및 구조해석)

  • Kim, Seong-Keol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.88-95
    • /
    • 2007
  • Generally, the integrated system using ion beam consists of 4 major parts, which are SEM, FIB, nano stage, and chamber. Among them, the nano stage and the chamber are designed and manufactured. The whole systems are integrated. Also, FE models are built to perform modal analyses of each part and the whole integrated system with a commercial program. Through these analyses, it is found that each part and the integrated system are very safe against vibrations including external excitations from ground and any others, because their natural frequencies are much larger than frequencies of external excitations. Also, isolation of ground induced vibration is considered.

Structural Safety Evaluation of Multi-Pressure Integrated Chamber for Sport-Multi-Artificial Environment System (스포츠 멀티 인공환경 시스템을 위한 다중압력 일체형 챔버의 구조안전성 평가)

  • Lee, Joon-Ho;Kang, Sang-Mo;Chae, Jae-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.324-328
    • /
    • 2019
  • There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sport-multi environment simultaneously. In this study, we design a multi-pressure (positive / atmospheric / negative pressure) integrated chamber that can be used for the sport-multi-artificial environment system. We presented new chamber designs with enlarged space for the tall users and then carried out structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell and the entrance, the structural safety of the chamber was evaluated with the allowable stress of its material. As a result of the structural analysis of the multi-pressure integrated chamber, the maximum stress for the positive pressure and negative pressure conditions was much smaller than the allowable stress of its material. And as a result of the structural safety evaluation, it was confirmed that the design of the final prototype for the chamber was structurally safe by satisfying the safety factor of 2 or more.

Development of Virtual Integrated Prototyping Simulation Environment for Plasma Chamber Analysis and Design (VIP-SEPCAD) (플라즈마 챔버의 특성 분석 및 최적 설계를 위한 가상의 시뮬레이션 환경 개발)

  • 김헌창;설용태
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.9-12
    • /
    • 2003
  • This paper describes a newly developed simulation environment for analysis and design of a plasma processing chamber based on first principles including complicated physical and chemical interactions of plasma, fluid dynamics of neutrals, and transport phenomena of particles. Capabilities of our simulator, named VIP-SEPCAD (Virtual Integrated Prototyping Simulation Environment for Plasma Chamber Analysis and Design), are demonstrated through a two dimensional simulation of an oxygen plasma chamber. VIP-SEPCAD can provide plasma properties such as spatiotemporal profiles of plasma density and potential, electron temperature, ion flux and energy, etc. By coupling neutral and particle transport models with a three moment plasma model, VIP-SEPCAD can also predict spatiotemporal profiles of chemically reactive species and particles exist in plasma.

  • PDF

Review of Application of VOF-Based NWT on Integrated OWC System (VOF 기반의 수치조파수조를 이용한 OWC 통합시스템 성능연구에 대한 고찰)

  • Liu, Zhen;Jin, Ji-Yuan;Hyun, Beom-Soo;Hong, Key-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2012
  • Oscillating water column is the most widely used ocean energy converting systems all over the world. The operating performance is influenced by the efficiencies of the two converting stages in the OWC chamber-turbine integrated system. In order to consider the effects of the turbine, the orifice model are carried out. The VOF based Numerical Wave Tank (NWT) is utilized to simulate the water column oscillation inside the chamber and the results are compared with corresponding experimental data. This paper reviews the state of the art in interaction among wave elevation inside the chamber and air flow rate in the duct, which are considered the turbine effects. Effects of incident wave conditions and several shape parameters on the operating performance of OWC chamber are investigated numerically. The effects of the impulse turbine on the integrated system and interaction among the wave elevation, pressure and air flow velocities variations are investigated.

New SMOLED Deposition System for Mass Production

  • Lee, J.H.;Kim, C.W.;Choi, D.K.;Kim, D.S.;Bae, K.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.407-410
    • /
    • 2003
  • We will introduce our new concept deposition system for SMOLED manufacturing in this conference. This system is designed to deposit organic and metal material to downward to overcome the limit of substrate size and process tact time hurdle for OLED mass production, and is organized with organic deposition chamber, substrate pre-cleaning chamber, metal deposition chamber and encapsulation system. These entire process chambers are integrated with linear type substrate transfer system. We also compare our new SMOLED manufacturing system with conventional vacuum deposition systems, and show basic organic thin film property data, organic material deposition property data, and basic device property.

  • PDF

Performance Improvement of an Integrated-type Fully-Hydraulic Breaker by Sensitivity Analysis (일체형 순수유압식 브레이커의 민감도해석에 의한 성능 향상)

  • Choi, S.;Chang, H.W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • The performance improvement of a small-size integrated-type fully hydraulic breaker is studied in this paper. Mathematical modeling of the breaker is established and verified by experiment. Through sensitivity analysis using AMESim, the key design parameters are selected and nearly optimized to maximize the impact energy as well as to improve the dynamic characteristics such as the piston upper chamber pressure, piston and valve displacements. As a result, the impact energy, blows per minute(bpm) and output power are increased by 52.9%, 1%, and 55.6%, respectively compared with the current design. The dynamic characteristics of the piston upper chamber pressure, piston and valve displacements are also improved by the design change.

  • PDF

Separation characteristics of particles in a self-rotating type centrifugal oil purifier

  • Pyo, Young-Seok;Jung, Ho-Yun;Choi, Yoon-Hwan;Doh, Deog-Hee;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The centrifugal oil purifier is used in an engine for lubrication and to remove impurities. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. An impure particle in the oil is separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are absorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviors of particles in this centrifugal oil purifier were investigated numerically and the filtration efficiencies was evaluated. For calculations, a commercial code is used and the SST (Shear Stress Transport) turbulence model has been adopted. The MFR (Multi Frames of Reference) method is introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies are evaluated. It has been verified that the filtration efficiency is increased with the increments in the particle size, the particle density and the rotating speed of the cylindrical chamber.

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF

A Study on Integrated OWC System within Turbine Effects

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Lee, Young-Yeon;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • Oscillating Water Column is one of the most widely used converting systems all over the world. The operating performance is influenced by the efficiencies of the two converting stages in the OWC chamber-turbine integrated system. In order to study the effects of the pressure drop induced by the air turbine, the experiments using the impulse turbine and the orifice device are carried out in the wave simulator test rig. The numerical simulation utilizing the orifice and porous media modules is calculated and validated by the corresponding experimental data. The numerical wave tank based on the two-phase VOF model embedded with the above modules is employed to investigate the wave elevation, pressure variation inside the chamber and the air flow velocity in the duct. The effects of the air turbine on the integrated system and interaction among the wave elevation, pressure and air flow velocities variations are investigated, which demonstrates that the present numerical model are more accurate to be employed.

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF