• Title/Summary/Keyword: Integral floating

Search Result 56, Processing Time 0.026 seconds

A 3-Dimentional Radiation Diffraction Problem Analysis by B-Spline Higher-Order Panel Method

  • Kim Gun-Do;Lee Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.10-26
    • /
    • 2006
  • The radiation problem for oscillating bodies on the free surface has been formulated by the over-determined Green integral equation, where the boundary condition on the free surface is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are removed by placing additional control points on the free surface surrounded by the body. The B-Spline based higher order panel method is then applied to solve the problem numerically. Because both the body geometry and the potential on the body surface are represented by the B-Splines, that is in polynomials of space parameters, the unknown potential can be determined accurately to the order desired above the constant value. In addition, the potential expressed in B-Spline can be differentiated analytically to get the velocity on the surface without introducing any numerical error. Sample computations are performed for a semispherical body and a rectangular box floating on the free surface for six-degrees of freedom motions. The added mass and damping coefficients are compared with those by the already-validated constant panel method of the same formulation showing strikingly good agreements.

Nonlinear Vortical Forced Oscillation of Floating Bodies (부유체의 대진폭 운동에 기인한 동유체력)

  • 이호영;황종흘
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 1993
  • A numerical method is developed for the nonlinear motion of two-dimensional wedges and axisymmetric-forced-heaving motion using Semi-Largrangian scheme under assumption of potential flows. In two-dimensional-problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary. In three-dimensional-problem Rankine ring sources are used in a Green's theorem boundary integral formulation to salve the field equation. The solution is stepped forward numerically in time by integrating the exact kinematic and dynamic free-surface boundary condition. Numerical computations are made for the entry of a wedge with a constant velocity and for the forced harmonic heaving motion from rest. The problem of the entry of wedge compared with the calculated results of Champan[4] and Kim[11]. By Fourier transform of forces in time domain, added mass coefficient, damping coefficient, second harmonic forces are obtained and compared with Yamashita's experiment[5].

  • PDF

State-Space Equation Model for Motion Analysis of Floating Structures Using System-Identification Methods (부유식 구조체 운동 해석을 위한 시스템 식별 방법을 이용한 상태공간방정식 모델)

  • Jun-Sik Seong;Wonsuk Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.85-93
    • /
    • 2024
  • In this paper, we propose a method for establishing a state-space equation model for the motion analysis of floating structures subjected to wave loads, by applying system-identification techniques. Traditionally, the motion of floating structures has been analyzed in the time domain by integrating the Cummins equation over time, which utilizes a convolution integral term to account for the effects of the retardation function. State-space equation models have been studied as a way to efficiently solve floating-motion equations in the time domain. The proposed approach outlines a procedure to derive the target transfer function for the load-displacement input/output relationship in the frequency domain and subsequently determine the state-space equation that closely approximates it. To obtain the state-space equation, the method employs the N4SID system-identification method and an optimization approach that treats the coefficients of the numerator and denominator polynomials as design variables. To illustrate the effectiveness of the proposed method, we applied it to the analysis of a single-degree-of-freedom model and the motion of a six-degree-of-freedom barge. Our findings demonstrate that the presented state-space equation model aligns well with the existing analysis results in both the frequency and time domains. Notably, the method ensures computational accuracy in the time-domain analysis while significantly reducing the calculation time.

An Investigation into Three Dimensional Mutable 'Living' Textile Materials and Environments (2) (3D 가상 이미지의 텍스타일 소재로의 적용을 통한 삼차원 변형가능한 'Living Textil'과 환경변화에 관한 연구 (2))

  • Kim, Ki-Hoon;Suh, Ji-Sung
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.2
    • /
    • pp.316-323
    • /
    • 2011
  • This research aim concerns questioning how we can generate environments suggestive of nature fused with built environments through textiles. Through literature reviews and experiments with available the 3D imaging techniques of Holography, Lenticular and other new technologies. We also have researched towards finding the most effective method for 3D imaging techniques for textile applications. The advantage of the combining technique is to create the possibility of seeing a number of different floating 3D illusory images, depending on the viewing angle. This objective is to produce intriguing textile patterns and images in which the objects and colours change as viewpoints change. Experimental work was carried out in collaboration with professional textile researchers, scientists, artists and designers conducting research in this field.

Development of the Straightness Compensation System for Ultra-Precision Machine Using DSP (DSP를 이용한 초정밀가공기용 진직도 보상시스템 개발)

  • 이대희;이종호;김호상;민흥기;김민기;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.283-286
    • /
    • 2002
  • This paper presents the straightness compensation system which is a device for improving the machining accuracy of ultra-precision machines by synchronizing the position of diamond tool tip with machine error motion. Sine it is actuated by piezoelectric actuator with highly nonlinear hysteresis characteristics, the feedback control schemes such as Proportional Integral(PI), are required and realized by measuring the displacements of diamond tool tip. for the better tracking performance, the controller was implemented using TMS320C32 32bit floating-point DSP which is fast so that the real-time control is possible. In addition, stand alone type DSP board was chosen fur the easy assembly into the ultra-precision machines. The experimental results show good command tracking performance and the motion error of the machine is satisfactorily compensated during the machining process.

  • PDF

A Study on the Active Control of Air Bearing (공기베어링의 능동제어에 관한 연구)

  • Lee, Jeong-Bae;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2501-2507
    • /
    • 1996
  • In this paper actively controlled air bearing is investigated to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled air beairng is composed of an air bearing, a gap sensor, a controller, and a piezo actuator. By controlling the position of air bearing with piezo actuator, the position of floating object is controlled. In this study the proportional-Integral-Derivative controller is employed. Active air bearing is investigated numerically and experimentally. There is good agreement between the simulation and the experimental results. It is shown that the stiffness and damping characteristics and positioning experimental results. It is shown that the stiffness and damping characteristics and positioning accuracy of air bearing can be improved by means of adopting actively controlled air bearing.

Microprocessor Control of a Prosthetic Arm by EMG Pattern Recognition (EMG 패턴인식을 이용한 인공팔의 마이크로프로세서 제어)

  • Hong, Suk-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.10
    • /
    • pp.381-386
    • /
    • 1984
  • This paper deals with the microcomputer realization of EMG pattern recognition system which provides identification of motion commands from the EMG signals for the on-line control of a prosthetic arm. A probabilistic model of pattern is formulated in the feature space of integral absolute value(IAV) to describe the relation between a motion command and the location of corresponding pattern. This model enables the derivation of sample density function of a command in the feature space of IAV. Classification is caried out through the multiclass sequential decision process, where the decision rule and the stopping rule of the process are designed by using the simple mathematical formulas defined as the likelihood probability and the decision measure, respectively. Some floating point algorithms such as addition, multiplication, division, square root and exponential function are developed for calculating the probability density functions and the decision measure. Only six primitive motions and one no motion are incorporated in this paper.

  • PDF

A novel coupled finite element method for hydroelastic analysis of FG-CNTRC floating plates under moving loads

  • Nguyen, Vu X.;Lieu, Qui X.;Le, Tuan A.;Nguyen, Thao D.;Suzuki, Takayuki;Luong, Van Hai
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.243-256
    • /
    • 2022
  • A coupled finite element method (FEM)-boundary element method (BEM) for analyzing the hydroelastic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) floating plates under moving loads is firstly introduced in this article. For that aim, the plate displacement field is described utilizing a generalized shear deformation theory (GSDT)-based FEM, meanwhile the linear water-wave theory (LWWT)-relied BEM is employed for the fluid hydrodynamic modeling. Both computational domains of the plate and fluid are coincidentally discretized into 4-node Hermite elements. Accordingly, the C1-continuous plate element model can be simply captured owing to the inherent feature of third-order Hermite polynomials. In addition, this model is also completely free from shear correction factors, although the shear deformation effects are still taken into account. While the fluid BEM can easily handle the free surface with a lower computational effort due to its boundary integral performance. Material properties through the plate thickness follow four specific CNT distributions. Outcomes gained by the present FEM-BEM are compared with those of previously released papers including analytical solutions and experimental data to validate its reliability. In addition, the influences of CNT volume fraction, different CNT configurations, water depth, and load speed on the hydroelastic behavior of FG-CNTRC plates are also examined.

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.

A Preliminary Study on Shore Protection from Erosion around Seoguipo Coastal Waters (서귀포 연안해역의 침식대책 수립을 위한 기초연구)

  • Jeon Min-Su;Lee Joong-Woo;Lee Hak-Seung;Hwan Ho-Dong;An Do-Kyung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.537-545
    • /
    • 2005
  • Traditionally Jeju island has a mild oceanic climate throughout the year and famous as worldwide resort area bemuse of its pure natural environment and dramatic coastal scenery. But unpredicted coastal erosion problem, mused by variation of environmental conditions from construction of coastal structure and renovation of the existing ports, has raised its head above the water, and is becoming serious these days just like other coastal area in Korea. The phenomena happen here along the seaside of southern part of the island show that severe changes in coastal line from erosion and even witnessed the coastal cliff failure. In advanced countries, coastal engineers and researchers have studied deeply about this kind of problem for a long time. However, as it is not sot active in Korea and lack of research data, there exists difficulties on building protection methods and thoughtless constructions might make it more complicated and fatal to the coastal environment. In this study, we investigated some case studies of other countries and intended to induce and propose some integral protection methods for coastline erosion, considering environmentally sound and water friendly way of development such as artificial reef, floating breakwater, and double cellblock breakwater. Finally, we made analysis on the proposed methods with numerical model test and evaluation on the feasibility of each method.