• Title/Summary/Keyword: Integral Stirling cryocooler

Search Result 4, Processing Time 0.018 seconds

Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

  • Hong, Yong-Ju;Ko, Junseok;Kim, Hyo-Bong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.

A Study on Thermal Environmental Performance Test of the Rotary Compressor Stirling Cryocooler (회전압축기형 스털링 냉동기의 열환경 성능시험에 관한 연구)

  • Park, Seong-Je;Hong, Yong-Ju;Kim, Hyo-Bong;Kimm, Dae-Woong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1953-1958
    • /
    • 2007
  • This paper presents the results of a series of performance tests for the integral Stirling cryocooler. Infrared sensor systems incorporating cryocoolers are required to be qualified to the appropriate environmental specification. Integral Stirling cryocooler for thermal imaging system have matured to the stage of undergoing formal qualification test program. The thermal environmental test of the Stirling cryocooler is presented in this paper. We performed that low and high temperature keeping test from $-40^{\circ}C$ to $+71^{\circ}C$ and operating test at high and low temperature cyclic range with acceptance tests performed at scheduled intervals. Cooldown time to 80K and steady state input power at 80K were determined as a function of cooler components temperatures at the compressor, hot end and cold tip. Tests performed on this cooler have been successful with a measured cooldown time to 80K of less than 5 minutes 24seconds for $71^{\circ}C$ ambient temperature with input power of 11W

  • PDF

A study on the performance characteristics of rotary type Stirling cryocooler (일체형 스터링 냉동기의 설계, 제작 및 성능특성에 관한 연구)

  • Park, S.J.;Hong, Y.J.;Kim, H.B.;Kim, Y.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.54-58
    • /
    • 2006
  • Stirling cryocooler is relatively compact, reliable, commercially available. and uses helium as a working fluid. Over the past decade and a half, there has been rapid development of Stirling cryocooler, mainly for military and space applications. Stirling cryocoolers have been widely used lot the cooling of infrared sensors and high temperature superconducting filters to the temperature of the liquid nitrogen. The Stirling cryocooler with the rotary compressor is applicable to the cooling device for the compact mobile thermal imaging system, because the cryocoolers have the compact structure and light weight. In this paper, integral Stirling cryocooler is designed, manufactured and fabricated, and performance characteristics are investigated. This cooler delivers approximately 0.6W cooling at 80K for 20W of input power from 24V DC power supply.