• Title/Summary/Keyword: Integral Reactor

Search Result 223, Processing Time 0.018 seconds

Heterogeneously Catalyzed Oxidations of Cyclopentene and of 1-Pentene (시클로펜텐과 1-펜텐의 불균일 촉매 산화반응)

  • Yang, Hyun S.;Kim, Young H.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.888-901
    • /
    • 1996
  • Oxidations of cyclopentene and of 1-pentene with air have been studied on a V/Mo/P/Al/Ti-mixed oxide catalyst in a fixed bed integral reactor. At high levels of conversion maleic anhydride was in each case produced as the major organic product, along with minor amounts of phthalic anhydride and, only starting from 1-pentene, also of citraconic anhydride. At lower levels of conversion a total of 30 organic products have been identified, some of which may be intermediates on the way from the substrates to the three anhydrides mentioned above. Based on the dependence of selectivities of the organic products on conversion, reaction schemes for the formation of maleic anhydride, phthalic anhydride and citraconic anhydride have been proposed. Oxidation at $310^{\circ}C$ led to increasing conversions and selectivities for maleic anhydride with decreasing space velocities. The highest selectivities for maleic anhydride were obtained at conversion of ca. 100%. Oxidation at a constant space velocity of $2{\cdot}10^4h^{-1}$ led to increasing conversions with increasing temperatures in the range of $300^{\circ}C{\sim}420^{\circ}C$, while the selectivity for maleic anhydride passed through a maximum value of ca. 39% at $370^{\circ}C$ in the oxidation of cyclopentene and a maximum value of ca. 30% at $400^{\circ}C$ in the oxidation of 1-pentene.

  • PDF

Experimental Study of Chemical Effects on Head Loss across Containment Sump Strainer under Post-LOCA Environment (LOCA이후 원자로건물집수조 여과기의 수두손실에 대한 화학적 영향의 실험연구)

  • Ku, Hee-Kwan;Jung, Bum-Young;Hong, Kwang;Jung, Eun-Sun;Jeong, Hyun-Jun;Park, Byung-Gi;Rhee, In-Hyoung;Park, Jong-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3748-3754
    • /
    • 2009
  • An integral head loss test in a test apparatus was conducted to simulate chemical effects on a head loss across a strainer in a pressurized water reactor (PWR) containment water pool after a loss of coolant accident (LOCA). The test was conducted during 30 days in the condition of a short spray, a long spray, and no materials with chemical effects. The result exhibited that the head loss was affected on amounts of the exposed materials according to spray conditions. XRD analysis of the collected precipitates showed that the precipitates were phosphate compounds. Comparison of the head loss with dissolved species concentration showed that high increase rate of the head loss resulted from the corrosion of aluminum and zinc but slow increase rate of the head loss resulted from the precipitates induced by Si, Mg, and Ca from leaching reaction at NUKON and concrete after passivation of metal specimens.

NUWARD SMR safety approach and licensing objectives for international deployment

  • D. Francis;S. Beils
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1029-1036
    • /
    • 2024
  • Drawing on the deep experience and understanding of the principles of nuclear safety, as well as many years of nuclear power plant design and operation, the EDF led NUWARD SMR Project is developing a design for a Small Modular Reactor (SMR) of 340 MWe composed of two 170 MWe independent units, that will supplement the offering of high-output nuclear reactors, especially in response to specific needs such as replacement of fossil-fuelled power plants. NUWARD SMR is a mix of proven and innovative design features that will make it more commercially competitive, while integrating safety features that comply with the highest international standards. Following the principles of redundancy and diversity and rigorous application of Defence in Depth (DID), with an international view on nuclear safety licensing, the Project also incorporates new safety approaches into its design development. The NUWARD SMR Project has been in development for a number of years, it entered conceptual design formally in mid-2019 and entered Basic Design in 2023. The objective of the concept design phase was to confirm the project technological choices and to define the first design configuration of the NUWARD SMR product, to document it, in order to launch pre-licensing with the French Safety Authority (ASN) and to define its estimated cost and its subsequent development and construction schedules. As a delivery milestone the Safety Options file (called the Dossier d'Options de Sûreté (DOS)) has been submitted to ASN in July 2023 for their opinion. An integral part of the NUWARD SMR Project, is not only to deliver a design suitable for France and to satisfy French regulation, but to develop a product suitable and indeed desirable, for the international market, with a first focus in Europe. In order to achieve its objectives and realise its market potential, the NUWARD SMR Project needs to define and realise its safety approach within an international environment and that is the key subject of this paper. The following paper: • Summarises the foundation principles and technological background which underpin the design; • Contextualises the key design features with regard to the international safety regulatory framework with particular emphasis on innovative passive safety aspects; • Illustrates the Project activities in preparation for first licensing in France, and also a wider international view via the ASN led Joint Early Review of the NUWARD SMR design, including Finnish and Czech Republic regulators, recently joined by the Swedish, Polish and Dutch regulators; • Articulates the collaborative approach to design development from involvement with the Project partners (the Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Naval Group, TechnicAtome, Framatome and Tractebel) to the establishment of the International NUWARD Advisory Board (INAB), to gain greater international insight and advice; • Concludes with the focus on next steps into detailed design development, standardisation of the design and its simplification to enhance its commercial competitiveness in a context of further harmonisation of the nuclear safety and licensing requirements and aspirations.