• Title/Summary/Keyword: Intake valve

Search Result 291, Processing Time 0.025 seconds

STUDY ON THE IN-CYLINDER FLOW CHARACTERISTICS OF AN SI ENGINE USING PIV

  • LEE S.-Y.;JEONG K.-S.;JEON C.-H.;CHANG Y.-J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.453-460
    • /
    • 2005
  • The tumble or swirl flow is used to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the end of the compression stroke. Since the in-cylinder flow is a kind of transient state with rapid flow variation, which is non-steady state flow, the tumble or swirl flow has not been analyzed sufficiently whether they are applicable to combustion theoretically. In the investigation of intake turbulent characteristics using PIV method, typical flow characteristics were figured out by SCV configurations. An engine installed SCV had higher vorticity and turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially near the cylinder wall and lower part of the cylinder. Above all, the engine with SCV 8 was superior to the others in aspect of vorticity and turbulent strength. For energy dissipation, a baseline engine had much higher energy loss than the engine installed SCV because flow impinged on the cylinder wall. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation increased and flow energy was conserved effectively through the experiment.

One Dimensional Simulation Model Development of the EFI Small Engine (전자제어분사 방식 소형엔진의 1차원 성능 모델 개발)

  • Yeom, Kyoung-Min;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1502-1508
    • /
    • 2011
  • One dimensional simulation model of an EFI small engine has been developed based on the commercial small engine. Newly developed simulation model has been evaluated comparing with the experimental results to check the validity. Simulation result shows very good agreement having margin of error of 3 percentage compared with experimental torque and power values. Also, to improve the small engine performance, the influence of the intake valve timing and duration on the engine performance has been analyzed using the simulation model.

A Study for Failure Examples of Emission Gas Recirculation and Air Control and Catalyzed Particulate Filter System in Diesel Engine Vehicle (디젤엔진 자동차의 EGR 및 공기 제어와 CPF 장치에 관련된 고장사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Youm, Kwang Wook;You, Chang Bae;Kim, Sung Mo;Lim, Ha Young;Ahn, Ho Cheol;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.78-83
    • /
    • 2018
  • The purpose of this paper is to study for failure examples of emission gas recirculation and air control and catalyzed particulate filter system in diesel engine vehicle. The first example, the researcher found the fact that the much engine oil came into the intake manifold causing diaphragm damage of EGR valve. The engine oil entered into combustion chamber of engine so that a car emit the polluted exhaust gas when driving. The second example, the researcher certified the sticking phenomenon of carbon and foreign substance with the throttle flap so that the exhaust fumes discharged exhaust port. The third example, the regeneration function don't activated to not detect the temperature of exhaust gas because of damage in the sensor. Thus, the researcher must meticulously manage his car not in order to take place the problem of environmental pollution.

Cardiovascular beriberi: rare cause of reversible pulmonary hypertension

  • Song, Joon Hyuk;Cheon, Sang Soo;Bae, Myung Hwan;Lee, Jang Hoon;Yang, Dong Heon;Park, Hun Sik;Cho, Yongkeun;Chae, Shung Chull
    • Journal of Yeungnam Medical Science
    • /
    • v.31 no.1
    • /
    • pp.38-42
    • /
    • 2014
  • Cardiovascular beriberi is caused by thiamine deficiency and usually presents as high cardiac output failure associated with predominantly right-sided heart failure and rapid recovery after treatment with thiamine. Because of its rarity in developed countries, the diagnosis can often be delayed and missed. We recently experienced a case of cardiovascular beriberi with pulmonary hypertension which successfully treated with thiamine infusion. A 50-year-old man with chronic heavy alcoholics was refered to our department for dyspnea with mental change. Echocardiography showed marked right ventricular (RV) dilatation and flattening of the interventricular septum with a D-shaped deformation of the left ventricle. Moderate tricuspid valve regurgitation was found and estimated RV systolic pressure was 52 mm Hg. Because of his confused mentality and history of chronic alcohol intake, neurological disorder due to thiamine deficiency was suspected and intravenous thiamine was administered and he continuously received a daily dose of 100 mg of thiamine. Follow up echocardiography showed marked reduction of RV dilatation and improvement of a D-shaped deformation of the left ventricle. He finally diagnosed as cardiovascular beriberi on the basis of dramatic response to intravenous thiamine. Thiamine deficiency can cause reversible pulmonary hypertension, and can still be encountered in the clinical setting. Thus high index of suspicion is critically needed for diagnosis.

Ileal and Total Tract Digestibility in Growing Pigs Fed Cassava Root Meal and Rice Bran Diets With Inclusion of Fish Meal and Fresh or Ensiled Shrimp By-Products

  • Ngoan, Le Duc;Lindberg, Jan Erik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.216-223
    • /
    • 2001
  • The digestibility of organic matter (OM), crude protein (CP), ether extract and amino acids of a cassava root meal and rice bran diet, without (Basal) and with inclusion of fish meal (FM) or fresh (FSB) or ensiled (ESB) shrimp by-product in growing pigs (Large White$\times$Mong Cai) fitted with post-valve T-caecum (PVTC) cannulas was studied in a $4{\times}4$ change-over experiment. Significantly higher ileal digestibility of OM in the basal and FM diets and lower ileal digestibility of CP in the basal and ESB diets were found (p<0.05). Total tract digestibilities of OM and CP of diet ESB were lower (p<0.05) than in the other diets. The apparent ileal digestibilities of most amino acids were higher (p<0.05) in diets FM, FSB and ESB than in the basal diet. There was no difference (p>0.05) in the ileal digestibility of individual amino acids between diets FM, FSB and ESB, except for threonine, alanine and glycine. The estimated apparent ileal digestibility of individual amino acids in ensiled shrimp by-product was lower (p<0.05) than in fresh shrimp by-product and fish meal. In conclusion, as a result of the reduced daily intake of the diets containing shrimp by-products and lower ileal and total tract digestibility of both fresh and ensiled shrimp by-products complete replacement of fish meal cannot be recommended. The ensiled shrimp by-product was inferior nutritionally compared with fresh shrimp by-product. However, lower daily feed intakes of both the FSB and ESB diets suggest that the replacement should only be made partially, in order not to reduce the overall performance.

Simulation Study for the Performance Improvement of the Injector Module for Heavy-duty CNG Engines (대형 CNG 엔진용 인젝터 모듈의 성능 개선을 위한 연구)

  • Kim, Yong-Rae;Park, Won-A;Kim, Chang-Gi;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2016
  • A fuel supply system of heavy-duty CNG engine is composed as a module structure which is integrated by about 6 injectors. There are only one input and output passage for gas fuel supply in this injector module. The response performance for transient operation of an CNG engine is very poor because only one output fuel supply line is connected to the intake pipe after a throttle valve. In this study, a new guideline and internal flow design for the CNG injector module is suggested for the improvement of response performance by fluid dynamic simulations. As a result, the response performance of gas fuel supply can be improved by decreasing the total volume of internal flow passages and a same distance design from each injector to the exit of module shows good response performance and acquirement of linearity of fuel supply. But the injection order has little influence to injection performances.

Energy efficiency improvements in part load for a marine auxiliary diesel engine (선박발전기용 디젤엔진의 부분부하에서 에너지 효율 개선에 관한연구)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.877-882
    • /
    • 2014
  • The reduction of CO2 emission has been discussed in the Marine Environment Protection committee in the International Maritime Organization as the biggest causes of GHG for the purpose of indexing CO2 amounts released into the atmosphere from ships. Accordingly, various methods including the change in the hull design to improve energy efficiency, the coating development to reduce friction resistances, the additives development for improving thermal efficiency in an engine, the low-speed operation to reduce fuel consumptions, and etc. have been applied. The main engine of a ship is an electronic engine for improving the efficiency of the whole load area. However, marine generator engines still use mechanical drive engines in intake, exhaust, and fuel injection valve drive cams. In addition, most of marine generator engines in ships apply a part-load operation of less then 80% due to an overload protection system. Therefore, marine auxiliary diesel engine set at 100% load is necessary to readjust in order to efficient operation because of part-load operation. The objective of this study is to report the results of the part-load fuel consumption improvement by injection timing readjust to identifying the operational characteristics of a marine generator engine currently operated in a ship.

A Study on the Wear Characteristics of Aluminizing Steel ( 1 ) - Wear in Run-in Period on Rolling-Sliding Contact - (알루미나이징 강의 마모특성에 관한 연구 ( 1 ) - Rolling-Sliding 마찰의 초기마모영역을 중심으로 -)

  • 이규용
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.69-78
    • /
    • 1978
  • It is well known that the aluminizing steel is excellent in corrosion resistance and heat resistance. Therefore it has been used as boiler parts, heat exchanger parts and guide rails which are used under comparatively simple conditions. Recently, it has been noticed that aluminizing steel has high resistance to various atmosphere, high temperature oxidation and seawater resistance. So its usage has been extended widely to the production of parts such as intake and exhaust valve of internal combustion engine, turbine blade and pipelines On ships which required such properties. It is considered that aluminium coated steel is excellent in wear resistance because of high hardness on main ingredient FezAIs of Fe-AI alloy layer existed in diffusion coating layer. And it will beused as a new material taking wear resitance with seawater resistance in marine field. However it is difficult to findout any report concering the wear behaviors or properties of alum in izing steel. In this study the experiment was carried out under the condition of rolling-sliding contact using an Amsler-type wear testing machine at 0.80, 0.91, 1. 10, 1. 25% of slip ratio and 55.43, 78.38, 110.85 kg/mm^2 of Hertz's contact stress in run-in period for the purpose of service-ability test of aluminizing steel as a wear resisting material and obtaining the available design data. The followings are the obtained results from the experimen tal study; 1) The 2nd diffusion material has most excellent wear resistance. This material has brought out about 18% decrease of wear weight in a lower friction load level and 40~G decrease in a higher level comparing to the raw material. 2) Satisfactory effect of wear resistivity cannot be much expected in 2nd diffusion specimens. This is considered due to the formation of fine void in the alloy layer near the boundary to the aluminium layer. 3) Fracture on friction surface of aluminizing steel by the rolling-sliding contact is spalling, and spalling crack occurres initially beneath the specimen surface near the boundary in diffusion coating layer.

  • PDF

Study on the simulation of a spark ignition engine using BOOST (상용 소프트웨어를 이용한 스파크 점화 기관의 시뮬레이션에 관한 연구)

  • Jeong, Chang-Sik;Woo, Seok-Keun;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.733-742
    • /
    • 2016
  • In recent years, gas engines fueled with LNG or synthetic gas have been attracting considerable attention for marine use owing to their potential to facilitate better fuel economy and to reduce emissions. It has been confirmed that gas engines using the Otto cycle, which involves premixed combustion, can satisfy Tier III regulations without the EGR or SCR system. The objective of this study is to acquire simulation technologies for predicting gas engine performances in industrial fields. Using the commercial software BOOST, the simulation is conducted on a gasoline engine rather than a marine engine due to the gasoline engine's easier accessibility. This study consists of two stages. In the first stage published previously, the optimal modeling techniques for representing the behavior of the gas in the intake and exhaust systems were determined. In the current study, we formulated a method to evaluate the combustion and heat transfer processes in the cylinder and to ultimately determine the major performance parameters, given that the analytical model derived from the previous stage has been applied. Through this study, we were able to determine a combustion and heat transfer model and a valve discharge coefficient that are less reliant on empirical data: we were also able to formulate a methodology through which relevant constants are decided. We confirmed that the values of transient cylinder pressure variation, indicated mean effective pressure, and air supply can be successfully predicted using our modeling techniques.

A Study of the Fluidic Characteristics of High-Pressure Fuel Pumps for GDI Engines (GDI 고압펌프의 유동특성에 관한 연구)

  • Lee, Sangjin;Noh, Yoojeong;Liu, Hao;Lee, Jae-Cheon;Shin, Yongnam;Park, Yongduk;Kang, Myungkweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.455-461
    • /
    • 2015
  • A high-pressure fuel pump is a key component in a gasoline direct injection (GDI) engine; thus, understanding its flow characteristics is essential for improving the engine power and fuel efficiency. In this study, AMESim, which is a hydraulic analysis program, was used to analyze the performance of the high-pressure fuel pump. However, since AMESim uses a one-dimensional model for the system analysis, it does not accurately analyze the complicated flow characteristics. Thus, Fluent, computational fluid dynamics (CFD) software, was used to calculate the flow rates and net forces at the intake and discharge ports of the high-pressure fuel pump where turbulent flow occurs. The CFD analysis results for various pressure conditions and valve lifts were used as look-up tables for the AMEsim model. The CFD analysis results complemented the AMEsim results, and thus, improved the accuracy of the performance analysis results for the high-pressure fuel pump.