• 제목/요약/키워드: Intake air pressure

검색결과 198건 처리시간 0.024초

Dynamics of Air Temperature, Velocity and Ammonia Emissions in Enclosed and Conventional Pig Housing Systems

  • Song, J.I.;Park, K.H.;Jeon, J.H.;Choi, H.L.;Barroga, A.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권3호
    • /
    • pp.433-442
    • /
    • 2013
  • This study aimed to compare the dynamics of air temperature and velocity under two different ventilation and housing systems during summer and winter in Korea. The $NH_3$ concentration of both housing systems was also investigated in relation to the pig's growth. The ventilation systems used were; negative pressure type for the enclosed pig house (EPH) and natural airflow for the conventional pig house (CPH). Against a highly fluctuating outdoor temperature, the EPH was able to maintain a stable temperature at 24.8 to $29.1^{\circ}C$ during summer and 17.9 to $23.1^{\circ}C$ during winter whilst the CPH had a wider temperature variance during summer at 24.7 to $32.3^{\circ}C$. However, the temperature fluctuation of the CPH during winter was almost the same with that of EPH at 14.5 to $18.2^{\circ}C$. The NH3 levels in the CPH ranged from 9.31 to 16.9 mg/L during summer and 5.1 to 19.7 mg/L during winter whilst that of the EPH pig house was 7.9 to 16.1 mg/L and 3.7 to 9.6 mg/L during summer and winter, respectively. These values were less than the critical ammonia level for pigs with the EPH maintaining a lower level than the CPH in both winter and summer. The air velocity at pig nose level in the EPH during summer was 0.23 m/s, enough to provide comfort because of the unique design of the inlet feature. However, no air movement was observed in almost all the lower portions of the CPH during winter because of the absence of an inlet feature. There was a significant improvement in weight gain and feed intake of pigs reared in the EPH compared to the CPH (p<0.05). These findings proved that despite the difference in the housing systems, a stable indoor temperature was necessary to minimize the impact of an avoidable and highly fluctuating outdoor temperature. The EPH consistently maintained an effective indoor airspeed irrespective of season; however the CPH had defective and stagnant air at pig nose level during winter. Characteristics of airflow direction and pattern were consistent relative to housing system during both summer and winter but not of airspeed. The ideal air velocity measurement favored the EPH and therefore can be appropriate for the Korean environment. Further emphasis on its cost effectiveness will be the subject of future investigations.

가스터빈 결빙방지 시스템이 복합화력발전 시스템의 성능에 미치는 영향 (Analysis of the Influence of Anti-icing System on the Performance of Combined Cycle Power Plants)

  • 문성원;김정호;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.19-25
    • /
    • 2016
  • Anti-icing is important in gas turbines because ice formation on compressor inlet components, especially inlet guide vane, can cause performance degradation and mechanical damages. In general, the compressor bleeding anti-icing system that supplies hot air extracted from the compressor discharge to the engine intake has been used. However, this scheme causes considerable performance drop of gas turbines. A new method is proposed in this study for the anti-icing in combined cycle power plants(CCPP). It is a heat exchange heating method, which utilizes heat sources from the heat recovery steam generator(HRSG). We selected several options for the heat sources such as steam, hot water and exhaust gas. Performance reductions of the CCPP by the various options as well as the usual compressor bleeding method were comparatively analyzed. The results show that the heat exchange heating system would cause a lower performance decrease than the compressor bleeding anti-icing system. Especially, the option of using low pressure hot water is expected to provide the lowest performance reduction.

저레이놀즈수 k-ε 난류모형에 의한 축대칭 모형기관 실린더내 유동의 수치해석 (Numerical Simulation of In-Cylinder Flow for the Axi-symmetric Model Engine by Low Reynolds Number k-ε Turbulence Model)

  • 김원갑;최영돈
    • 한국자동차공학회논문집
    • /
    • 제2권1호
    • /
    • pp.38-50
    • /
    • 1994
  • To improve the efficiency of internal combustion engines, it is necessary to understand mixed air-fuel in-cylinder flow processes accurately at intake and compression strokes. There is experimental and numerical methods to analyse in-cylinder flow process. In numerical method, standard $k-{\varepsilon}$ model with wall function was mostly adopted in in-cylinder flow process. But this type model was not efficiently predicted in the near wall region. Therefore in the present study, low Reynolds number $k-{\varepsilon}$ model was adopted near the cylinder wall and standard $k-{\varepsilon}$ model in other region. Also QUICK scheme was used for convective difference scheme. This study takes axisymmetric reciprocating model engine motored at 200rpm with a centrally located valve, incorporated 60 degree seat angie, and flat piston surface excluding inlet port. Because in-cylinder flow processes are undergoing unsteady and compressible, averaged cylinder pressure and inlet velocity at arbitrary crank angle are determined from thermodynamic analytic method and incylinder states at that crank angle are iteratively determined from the numerical analytic method.

  • PDF

예혼합 압축착화 엔진에서 가솔린-디젤 연료의 연소 및 극미세입자 배출 특성에 관한 실험적 연구 (An Experimental Study on the Combustion and Nanoparticle Emission Characteristics of Gasoline-diesel Fuel in a Premixed Charge Compression Ignition Engine)

  • 윤승현;이두진;이창식
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.71-76
    • /
    • 2012
  • The aim of this work was to investigate the combustion and nanoparticle emission characteristics of premixed charge compression ignition (PCCI) combustion at various test conditions using a single cylinder common-rail diesel engine. In order to create the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber during the intake process and then the diesel fuel was directly injected into the combustion chamber as an ignition source for the gasoline premixture. From these results, it revealed that the ignition delays and combustion durations were gradually prolonged and the peak combustion pressure were increased because diesel fuel was injected early injection timing with the increase of premixed ratio. In addition, as the increase of premixed ratio, total particle number is generally decreased and particle volume also indicated low levels at the direct injection timing from BTDC $20^{\circ}$ to TDC. At further advanced injection timing, total particle number and volume were generally increased

가스엔진과 디젤엔진의 혼합 EGR시스템이 배기배출물에 미치는 영향 (Effects on Exhaust Gas Emission in Combined EGR System of Gas Engine and Diesel Engine)

  • 유동훈;서전수신;임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.896-902
    • /
    • 2009
  • EGR is applied in order to lower temperature of combustion chamber by using the specific heat of carbon dioxide in engine exhaust gas. However, the problem of EGR system in diesel engine is high PM concentration. Combined EGR system can be reduced it by mixing exhaust gas of gas engine into the intake air of diesel engine. This experimental study was designed for EGR system for both engines use. The results of EGR experimental study by using diesel engine and gas engine are as follows. 1) The pressure of combustion and rate of heat release decreased. 2) The specific fuel consumption increased. But, up to middle load, it little increased. 3) NO concentration has decreased up to 50% in almost all combustion area. 4) The variation of the PM concentration at low load is not so seen. But at high load, PM increased rapidly when concentration of oxygen is decreased and most of it caused the increasing of Dry Soot.

커먼레일 디젤기관에서 분사전략에 따른 성능 및 배출가스에 관한 연구 (A Study on Characteristics of Performance and Emission by CRDI Engine's Injection Strategy)

  • 엄동섭;고동균;나완용;이성욱
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.134-139
    • /
    • 2011
  • Recent research has focused on engine combustion technology as well as application of after-treatment in order to comply with emission regulation. However, it is much more efficient way to control emissions from engine itself and furthermore research on engine control will provide the direction of after-treatment technology in future. Furthermore, emission standard regulation for passenger diesel vehicles has been stringent compared to others and nano-particles will be included in EURO6 regulation in Europe and similar emission standard will be introduced in Korea. A 3.0 liter high speed diesel engine equipped with by CRDI system of 160MPa injection pressure, and an intake/exhaust system of V type 6 cylinder turbo-intercooler was applied. The injection duration and injection quantity, pilot injection types which are related to CRDI and air/fuel ratio control applied by EVGT were changed simultaneously. Standard experiment procedure constituted dilution apparatus and CPC system to collect nano-particles and these test results were compared with regulated materials of CO, HC, NOx and investigated their relations and characteristics of nano-particles.

GDI 인젝터의 동적 거동과 분사 특성에 대한 모델링 (Modeling Dynamic Behavior and Injection Characteristic of a GDI Injector)

  • 이계은;김나영;조영준;이동률;박성욱
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.210-217
    • /
    • 2017
  • A gasoline direct injection engine has an intake air temperature can be lowered by the fuel vaporization in the combustion chamber increase the volume efficiency is high compression ratio. Therefore, study for injection rate and characteristics which influence mixture formation in combustion chamber is important. Movement of the injector needle has a direct effect on the injection of the fuel, such as formation of cavitation, the fuel injection rate, etc. Therefore, recent studies on the dynamic characteristics of the injector considering the movement of the needle have been reported, but it takes a lot of time and cost to experimentally confirm the movement of the needle inside the injector. In this study, AMESim, a commercial 1-D code, and Star-CCM+, a 3-D CFD code, were used to predict the dynamic performance of the injector with needle motion. In order to predict the movement of the needle under the high pressure, the result of the surface pressure distribution according to the movement of the needle was derived by using the morphing technique of flow analysis. In addition, we predicted the injection rate of the injector considering the movement of the needle in conjunction with the 1-D code. The injection rate of the injector was measured by the BOSCH's method and the results were similar to those of the simulation results. This method can predict the injection rate and injection characteristics and this result is expected to be used to predict the performance of gasoline direct injection engines with low cost and time in the future.

합성가스/디젤 혼소압축착화 엔진의 합성가스 혼합비와 압축비에 따른 연소 및 배출가스 특성 (Syngas/Diesel Dual Fuel Combustion in a Compression Ignition Engine with Different Composition Ratios of Syngas and Compression Ratios)

  • 이준순;정탄;이용규;김창업;오승묵
    • 한국분무공학회지
    • /
    • 제24권1호
    • /
    • pp.35-42
    • /
    • 2019
  • Syngas is widely produced by incomplete combustion of coal, water vapor, and air (oxygen) in a high-temperature/high-pressure gasifier through a coal-gasification process for power generation. In this study, a simulation syngas which was mainly composed of $H_2$, CO, $CO_2$, and $N_2$ was fueled with diesel. A modified single cylinder compression ignition (CI) engine is equipped with intake port syngas supply system and mechanical diesel direct injection system for dual fuel combustion. Combustion and emission characteristics of the engine were investigated by applying various syngas composition ratios and compression ratios. Diesel fuel injection timing was optimized to increase indicated thermal efficiency (ITE) at the engine speed 1,800 rpm and part load net indicated mean effective pressure ($IMEP_{net}$) 2 to 5 bar. ITE of the engine increased with the $H_2$ concentration, compression ratio and engine load. With 45% of $H_2$ concentration, compression ratio 17.1 and $IMEP_{net}$ 5 bar, ITE of 41.5% was achieved, which is equivalent to that of only diesel fuel operation.

흡기중의 HHO 가스 첨가가 바이오 디젤 혼합연료를 사용한 산업용 디젤기관의 성능에 미치는 영향 (The Effect of HHO Gas on the Performance of Industrial Diesel Engine Using Biodiesel Blended Fuel)

  • 박권하;김주연;김철정;이은준;손권;박성훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권8호
    • /
    • pp.1022-1027
    • /
    • 2011
  • 디젤 엔진은 실린더 안에 공기를 흡입·압축한 후에 액체연료를 분사하여 연소하기 때문에 압축비가 높다. 높은 압축비로 인해 높은 열효율을 가지고 있지만 국부적인 고온 반응 구간에서 NOx 생성과 PM의 배출 증가와 같은 문제점을 가지고 있다. 이러한 문제점을 해결하기 위해서 연구기관, 대학 등에서 많은 연구가 이루어지고 있으며 그 중에서 수소를 흡기 중에 첨가하여 공급하는 기술이 연구되고 있다. 본 연구에서는 HHO가스를 흡기중에 첨가하여 바이오디젤 혼합 연료를 사용한 산업용 디젤기관에 미치는 영향을 분석 하였다. 실험조건은 0%, 50%, 100% 부하에서 엔진속도를 700rpm, 1000rpm, 1300rpm, 1600rpm, 1900rpm으로 구분하였다. 실험결과 최대 토크와 최대압력은 증가하는 경향을 보였으며, 연료소 모율은 감소하는 것으로 나타났다. 스모크농도 및 일산화탄소의 농도는 크게 저감되었고 질소산화물의 배출은 유사한 특성을 나타내었다.

MEASUREMENT OF OPERATIONAL ACTIVITY FOR NONROAD DIESEL CONSTRUCTION EQUIPMENT

  • HUAI T.;SHAH S. D.;DURBIN T. D.;NORBECK J. M.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.333-340
    • /
    • 2005
  • In order to better quantify the contribution from nonroad sources to emission inventories, it is important to understand not only the emissions rates of these engines but also activity patterns that can be used to accurately portray their in-use operation. To date, however, very little information is available on the actual activity patterns of nonroad equipment. In this study, a total of 18 pieces of nonroad equipment were instrumented with collected data including intake manifold air pressure (MAP), exhaust temperature and, on a subset of vehicles, engine rpm and throttle position. The equipment included backhoes, compactors, dozers, motor graders, loaders and scrappers used in applications such as landfilling, street maintenance and general roadwork. The activity patterns varied considerably depending on the type of equipment and the application. Daily equipment operating time ranged from less than 30 minutes to more than 8 hours, with landfill equipment having the highest daily use. The number of engine starts per day ranged from 3-11 lover the fleet with an average of 5 starts per day. The average percent idle time for the fleet was approximately $25\%$ with a range from 11 to $65\%$ for individual pieces of equipment. Duty cycles based on exhaust temperature/throttle position profiles were also developed for two graders and one dozer.