• Title/Summary/Keyword: Intake Valve

Search Result 291, Processing Time 0.024 seconds

Development of a numerical flow model for the multi-cylinder engine intake system (다기통 엔진 흡기시스템의 유동해석 모델개발)

  • Song, Jae-Won;Seong, Nak-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1921-1930
    • /
    • 1996
  • To design an optimum engine intake system, a flow model for the intake manifold was developed by the finite difference method. The flow in the intake manifold was one-dimensional, and the finite difference equations were derived from governing equations of flow, continuity, momentum and energy. The thermodynamic properties of the cylinder were found by the first law of thermodynamics, and the boundary conditions were formulated using steady flow model. By comparing the calculated results with experimental data, the appropriate boundary conditions and convergence limits for the flow model were established. From this model, the optimum manifold lengths at different engine operating conditions were investigated. The optimum manifold length became shorter when the engine speeds were increased. The effect of intake valve timings on inlet air mass was also studied by this model. Advancing intake valve opening decreased inlet air mass slightly, and the optimum intake valve closing was found. The difference in inlet air mass between cylinders was very small in this engine.

Analysis on Volumetric Efficiency and Torque Characteristics Using Inlet Port Pressure in SI Engines (흡기포트압력을 이용한 SI엔진의 체적효율 및 토크 성능 분석)

  • 이영주;홍성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1408-1418
    • /
    • 1992
  • The valve timing and intake system in SI engine is chosen in order to get the maximum performance at the target rpm. This is a compromise and the performance reduction is expected in a certain rpm range. Therefore, to accomplish the possible engine capacity all over the operation ranges, it is required to investigate the effects of intake system and valve timing on engines more thoroughly. In this paper, it was attempted to examine closely the combined effects on the torque and the volumetric efficiency due to the change of valve timing and intake system dimensions. For this, the inlet port pressure was chosen as a primary parameter to represent engine performance characteristics together with surge tank pressure and induction pressure as secondaries. The inlet port pressure was analyzed in connection with both the secondaries and the performance data. Especially the relation between the inlet port pressure and the torque and volumetric efficiency was investigated on the operating conditions. In this experiment, it was acquired that the performances at specific rpm range could be improved by the combinations of valve timing and intake system. Then it was verified that pressure at a intake system contained useful data for the engine performance. By the analysis of inlet port pressure with the others, it was obtained that the properties of the torque and the volumetric efficiency due to the change of valve timing and intake conditions were able to be defined by the average and the maximum inlet port pressures, the pressure near before the intake valve closing(IVC) point as well as the pressure at IVC point during the intake valve opening duration. These results could be applied to almost all over the experimental conditions.

EFFECT OF OVER-EXPANSION CYCLE IN A SPARK-IGNITION ENGINE USING LATE-CLOSING OF INTAKE VALVE AND ITS THERMODYNAMIC CONSIDERATION OF THE MECHANISM

  • Shiga, S.;Hirooka, Y.;Miyashita, Y.;Yagi, S.;Machacon, H.T.C.;Karasawa, T.;Nakamura, H.
    • International Journal of Automotive Technology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents further investigation into the effect of over-expansion cycle in a spark-ignition engine. On the basis of the results obtained in previous studies, several combinations of late-closing (LC) of intake valve and expansion ratio were tested using a single-cylinder production engine. A large volume of intake capacity was inserted into the intake manifold to simulate multi-cylinder engines. With the large capacity volume, LC can decrease the pumping loss and then increase the mechanical efficiency. Increasing the expansion ratio from 11 to 23.9 with LC application can produce about 13% improvement of thermal efficiency which was suggested to be caused by the increased cycle efficiency. The decrease of compression ratio from 11 to 5.5 gives little effect on the thermal efficiency if the expansion ratio could be kept constant. Thus, the expansion ratio is revealed to be a determining factor for cycle efficiency, while compression ratio is no more important, which suggests the usefulness of controlling the intake charge with intake valve closure timing. These were successfully explained by simple thermodynamic calculation and thus the mechanism could be verified by the estimation.

  • PDF

Effect of the Intake Valve Opening Timings and Fuel Injection Pressures on the Exhaust Emission Characteristics of a Gasoline Engine at Part Load Condition

  • Lee, Hyung-Min;Jeong, Yeon-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.317-322
    • /
    • 2011
  • This work has investigated the exhaust emissions such as Total Hydrocarbon (THC), Nitrogen Oxides(NOx), and Particulate Matter (PM) characteristics emitted from the tail-pipe of a continuously variable valve timing (CVVT) gasoline-fueled engine with different intake valve opening timings and injection pressures at the part load condition. Valve overlap period was varied from $40^{\circ}CA$ to $10^{\circ}CA$ and fuel injection pressure was increased from 3.5 bar to 5.0 bar. THC and NOx emissions decreased as intake valve opening timing was advanced regardless of fuel injection pressure. When the fuel was injected with the condition of 5.0 bar at all of valve overlap ranges, THC levels were reduced by 55%. NOx concentrations were diminished about 75% as valve overlap increased. PM size distributions were analyzed as bi-modal type of the nucleation and accumulation mode. Comparing with fuel injection pressures, PM emission levels were decreased at high pressure injection of 5.0 bar condition.

Numerical Study on the Radiation of Intake Noise from Internal Combustion Engine by Using Essentially Non-Oscillatory Schemes (ENO기법을 이용한 연소 엔진 흡기계 소음의 방사에 관한 수치적 연구)

  • 김용석;이덕주
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.239-250
    • /
    • 1998
  • Traditionally, intake noise from internal combustion engine has not recevied much attention compared to exhaust noise. But nowadays, intake noise is a major contributing factor to automotive passenger compartment noise levels. The main objective of this paper is to identify the mechanism of generation, propagation and radiation of the intake noise. With a simplest geometric model, one of the main noise sources for the intake stroke is found to be the pressure surge, which is generated after intake valve closing. The pressure surge, which has the nonlinear acoustic behavior, propagates and radiates with relatively large amplitude. In this paper, unsteady compressible Navier-Stokes equations are employed for the intake stroke of axisymmetric model having a single moving cylinder and a single moving intake valve. To simulate the periodic motion of the piston and the valve, unsteady deforming mesh algorithm is employed and Thompson's non-reflecting boundary condition is applied to the radiation field. In order to resolve the small amplitude waves at the radiation field, essentially non-oscillatory(ENO) schemes with an artificial compression method (ACM) are used.

  • PDF

A Numerical Analysis for Fuel Consumption by Improvement of Intake/Exhaust Valve Timing in a Common Rail Diesel Engine for a Generator (커먼레일 디젤엔진의 흡배기밸브 타이밍 개선을 통한 연비절감에 대한 수치해석적 연구)

  • Kim, Seung Chul;Kim, Chung Kyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.32-38
    • /
    • 2017
  • The common rail diesel engine used in this study uses mechanically driven camshaft for the operation of intake and exhaust valves, and the timing of valve opening and closing is fixed according to the operating conditions of the vehicle. However, the electric generator engine operates at a constant speed and partial load. Therefore, in order to optimize the design of common rail diesel engine for power generation, the characteristics of diesel combustion and emissions according to the change of valve timing were examined and calculated in terms of fuel economy. The valve timing of the diesel engine influenced the combustion characteristics by changing the intake and exhaust flow and it was considered that the fuel efficiency of the generator could be improved.

Numerical Study on the Waterhammer of PalDang Intake Pumping Station (팔당 취수펌프장의 수격현상에 관한 수치해석적 연구)

  • Kim, Kyung-Yup;Yu, Teak-In
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.52-58
    • /
    • 2000
  • The numerical study on the waterhammer was carried out for the intake pumping station of the metropolitan water supply 6th stage project. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully investigated. The surge tank and the stand pipes effectively protected the tunnels md the downstream region of pipeline from the pressure surge. In case the moment of inertia of the pump and motor was above $5080\;kg{\cdot}m^2$, the column separation did not occur in the pipeline between the pumping station and the inlet of 1st tunnel. As the moment of inertia increased, the pressure surges decreased in the pipeline conveying raw water. The pump control valve was chosen as the main surge suppression device for the intake pumping station. After power failure, the valve disc should be rapidly closed in 2.5 seconds and controlled the final closure to 15 seconds by the oil dashpot. If the slamming happened to the pump control valve, there was some danger of this system damaging. As the reverse flow through the valve increased, the upsurge extremely increased.

  • PDF

An experimental study on the swirl flow characteristics of a helical intake port (나선형 흡기포트의 선회유동 특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Yu, Gyeong-Won;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.793-803
    • /
    • 1997
  • This experimental study was mainly investigated on the swirl flow characteristics in the cylinder generated by a helical intake port. LDA system was used for the measurement of in-cylinder velocity fields. Tangential and axial velocity profiles, with varying valve lifts, valve eccentricity ratios and axial distance, were measured. When the intake valve was set in the cylinder center, we could find that in-cylinder swirl flow fields were composed of a forced vortex motion and a free vortex motion in the vicinity of the cylinder center and the cylinder wall respectively. In case of valve eccentricity ratio, N$_{y}$ = 0.45, the vortex flow which rotates to the opposite direction of a main rotating flow in the cylinder was found. And the reverse flow toward the cylinder head surface was also found in axial velocity profile and it showed the tendency of the linear decrease in the region of 0.leq.Y/B.leq.1.2.2.

Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine (SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석)

  • Kim, Y.N.;Lee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

A Study on Effect of the Intake Valve Timing and Injection Conditions on the PCCI Engine Performance (흡기밸브 닫힘 시기와 분사조건이 PCCI 엔진의 성능에 미치는 영향에 관한 연구)

  • Lee, Jae-Hyeon;Kim, Hyung-Min;Kim, Yung-Jin;Lee, Ki-Hyung
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • As world attention has focused on global warming and air pollution, high efficiency diesel engines with low $CO_2$ emissions have become more attractive. Premixed diesel engines in particular have the potential to achieve the more homogeneous mixture in the cylinder which results in lower NOx and soot emission. Early studies have shown that the operation conditions such as the EGR, intake conditions, injection conditions and compression ratio are important to reduce emissions in a PCCI (Premixed Charge Compression Ignition) engine. In this study a modified cam was employed to reduce the effective compression ratio. While opening timing of the intake valve was fixed, closing timing of the intake valve was retarded $30^{\circ}$. Although Atkinson cycle with the retarded cam leads to a low in-cylinder pressure in the compression stroke, the engine work can still be increased by advanced injection timing. On that account, we investigated the effects of various injection parameters to reduce emission and fuel consumption; as a result, lower NOx emission levels and almost same levels of fuel consumption and PM compared with those of conventional diesel engine cam timing could be achieved with the LIVC system.