• 제목/요약/키워드: Intake Port/Valve Model

검색결과 19건 처리시간 0.018초

흡기밸브에서의 연료증발이 혼합기 형성에 미치는 영향 (The effect of fuel evaporation in the intake valve back on mixture preparation)

  • 박승현;이종화;유재석;신영기;박경석
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.107-115
    • /
    • 1999
  • Hydrocarbon emission from spark ignition engines deeply relates with fuel evaporation mechanism. Therefore, fuel evaporation on the back of the intake valve is very important to understand fuel evaporation mechanism during engine warm up period. Intake valve heat transfer model was build up to estimate the amount of fuel evaporation on the intake valve back . Intake valve temperature was measured intake valve temperature is increased rapidly during few seconds right after engine start up and it takes an important role on fuel evaporation. The liquid fuel evaporation rate on the intake valve back proportionally increases as valve temperature increases, however its contribution slightly decreases as intake port wall temperature increases. The fuel evaporation rate on the valve back is about 40∼60% during engine warm-up period and it becomes about 20∼30% as intake port wall temperature increases. The estimation model also makes possible model also makes possible to review the effect of valve design parameters such as the valve mass and seat area on fuel evaporation rate through intake valve heat transfer.

  • PDF

저 레이놀즈수 k-ε난류모형에 의하 축대칭 모형포트 유동의 수치해석적 연구 (A Numerical Study on the Flow of a Model Intake Port Using Low Reynolds Number)

  • 홍용주;김철수;최영돈
    • 한국자동차공학회논문집
    • /
    • 제2권1호
    • /
    • pp.26-37
    • /
    • 1994
  • In this study, flow of a model intake port/valve system is analyzed by using low Reynolds number $k-{\varepsilon}$ model. Discharge coefficient was obtained from computational results for the various cases of valve lifts. Discharge coefficient becomes maximum when the valve lift is 20mm, and does not increase or decrease in proportional to valve lift. Most of pressure drop and production of turbulent kinetic energy occur at the edge points of the valve and the valve seat Thus, in order to improve discharge coefficient, rounding of edge points in valve and valve seat is recommended. As valve lift is increased, the velocity of the intake jet in the valve passage decreases, and the direction of the jet is more inclined toward the valve seat.

  • PDF

리버스 엔지니어링을 통한 디젤엔진 흡기포트의 성능 비교 (Diesel Engine Intake Port Analysis Using Reverse-engineering Technique)

  • 김창수;박성영
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.502-507
    • /
    • 2015
  • In this paper, we built a three-dimensional model by applying reverse engineering techniques on targeting the intake port of 2900cc class diesel engine before that three-dimensional design technique is applied. The performance of the intake port is predicted and analysed using the computational flow analysis. Flow Coefficient and Swirl Ratio have been analyzed for two intake port models. One is the intake port for the diesel engine with plunger-type fuel system, and the other is for the diesel engine with CRDI fuel system. Computational result shows that the Flow Coefficient of the intake port with CRDI fuel system is increased upto 10 percentage compared with that with plunger-type. Also, the intake port with plunger-type has high Swirl Ratio at high valve lift, and the intake port with CRDI fuel system has high Swirl Ratio at relatively low valve lift. It is believed that because of high performance of the fuel injector, the intake port with CRDI fuel system is designed for more air amount and not much swirl flow at high valve lift. However, high swirl flow is required at low valve lift for initial fuel and air mixing. The result of this study may be useful for the re-manufacturing industry of automotive parts.

GT-Power기반 Cam-In-Cam 가변밸브작동에 따른 스월유동 및 연소특성 해석 (Analysis of Swirl Flow and Combustion Characteristics by Variable Valve's Operation of Cam-In-Cam System based on GT-Power Program)

  • 이유민;조인수;김주현;박승우;이진욱
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.58-65
    • /
    • 2018
  • An analytic strategy to control the variable valve actuation applied to two intake valves (flow port intake valve and swirl port intake valve) was performed in this study. we considered the variation in phasing of intake valve profiles by using the Cam-in-Cam technology. The analytic model was implemented in the GT-Power simulation program and analyzed the result of regulated emissions such as, NOx and Soot, especially with IMEP characteristics. Namely, we meticulously investigated the sources of having effect on the amount of NOx and soot formation under the test conditions with retard timing of both flow port and swirl port intake valves for decreasing the opening duration by 35CAD. Also, we analyzed the effect of incylinder pressure and temperature with NOx variations and in-cylinder pressure and temperature on NOx variations and normalized turbulent intensity. Through this analysis, some useful results on the combustion and flow characteristics of the swirl port and flow port control of the intake valve were obtained by this study.

SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석 (Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine)

  • 김영남;이경환
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

경승용차용 5밸브(흡기3밸브) 가솔린 엔진의 연소실 형상 설계 기술에 관한 연구 (A Study on the Design Technique of a 5-valve Combustion Chamber for Subcompact Vehicles)

  • 이기형;성백규;정용호
    • 대한기계학회논문집B
    • /
    • 제25권8호
    • /
    • pp.1097-1102
    • /
    • 2001
  • For the purpose of development of high performance gasoline engine, the design technique of the 5-valve(3 intake valves) combustion chamber for a subcompact vehicle has been studied. 3 intake valves cylinder heads were designed by using a 3-dimension CAD program, and steady state flow experiments have been performed with these model. The 5-valve engines, which have larger valve opening areas, have larger intake flow rates and higher flow coefficient than the 4-valve engines. The effects of intake port design parameters of a 5-valve engine on the intake flow rate and bore size were studied, and the design guidelines for the 5-valve engine were established.

The Effect of the Intake Port Configuration on the Flow and Combustion in a 4-Valve Pentroof Gasoline Engine

  • Kim, Hongsuk;Lee, Jeongmin;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.259-267
    • /
    • 2001
  • The flow field in a cylinder of a 4-valve pentroof engine is studied using the KIVA-3V code. Turbulence is generated from the jet flow through valves and broken down to the small scale eddies in the compression process. It is known that the tumble effectively keeps turbulence during the compression process. In the combustion process, turbulence is known to enhance flame speed by increasing mass, momentum and heat transfer rates. The effects of the intake port angles on the flow and combustion characteristics are studied in this study. To study the effect of turbulence on the combustion process, Cantore combustion model is applied in this study.

  • PDF

흡입공기분류를 가로지르는 가솔린 분무의 유동 특성 연구 (A Study on the Flow Characteristics of Gasoline Spray across the Suction Air Stream)

  • 김원태;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.63-74
    • /
    • 1999
  • When a fuel was injected with opening the intake valve of a port fuel injection engine, the spray atomization and flow characteristics in the intake port have a strong influence on the mixture formation of a combustion chamber. Thus , this study was to clarify the spray flow characteristics of the air-assist gasoline spray with fine dropkets across the suction air stream in model intake port. For the simulated opening intake valve in port, suction air stream was varied to 10m/s ∼30m/s. And fuel pressur ewas fixed to 300kPa, but air assist pressure was varied to 0∼25kPa for a vairable spray conditions. Spray flow trajectory was investigated by means of laser sheet visualization and the measurements of droplet sizes and velocities were made by PDPA system. Measured droplets within the spray flow field were subdivided into five size groups and then, the flow characteristics of droplet size groups were investigated to the spray across a suction air stream.

  • PDF

전산유체해석을 통한 RE엔진 흡기포트의 개발 (Development of Intake Port for Range Extender Engine Using CFD Simulation)

  • 김창수;박성영
    • 한국산학기술학회논문지
    • /
    • 제14권6호
    • /
    • pp.2575-2580
    • /
    • 2013
  • 본 논문에서는 RE엔진에 적용하기위한 흡기포트를 CFD 기술을 활용하여 개발하였다. 3차원 모델링을 진행하고 전산유체해석을 진행하였으며, 계산된 유량계수와 스월계수를 실험결과와 비교 분석하였다. 흡기포트의 convex 및 concave부 곡률을 최적화하여 Recirculation의 발생과 유동저항을 저감하였다. 결과적으로, 계산된 평균 유량계수는 0.383이고, 평균 스월수는 1.544로 일반적인 2밸브 엔진 시스템의 평균성능에 상회하는 우수한 성능을 나타내었다.

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.