• 제목/요약/키워드: Intake Pipe

검색결과 89건 처리시간 0.03초

4 사이클 4기통 전기점화기관의 흡배기관내의 압력변동에 관한 연구 (A study on the pressure variation in the intake and exhaust pipes of four cycle four cylinder S.I. engine)

  • 이석재;김응서
    • 오토저널
    • /
    • 제10권6호
    • /
    • pp.85-91
    • /
    • 1988
  • The purpose of this study is to investigate the flow through the intake and exhaust system of a spark ignition engine. The flow was assumed to be one-dimensional, compressible and unsteady, and carburetor, muffler, valve and junction are modelled as boundary conditions according to their flow characteristics. In the experiment, four cylinder gasoline engine is used and the pressures in the intake and exhaust pipes and in the cylinder are measured and compared with the results of numerical analysis. In consequence of the comparison, four periods of pressure wave in a cycle are observed in both case of experiment and prediction. In case of exhaust pipe, the results obtained from the experiment are in accord with that from calculation. The results of the intake system show some differences with each other due to the complication in shape, but the periods of both case concur well.

  • PDF

흡기관내 와류생성기가 압축착화엔진의 수분 농도 분포 및 연소성능 향상에 미치는 영향 (Effect of Vortex Generator in Intake Pipe on the Moisture Concentration Distributions and Combustion Performance in a CI Engine)

  • 정석훈;서현규
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.169-174
    • /
    • 2018
  • In this work, optimization of blade shape for the improvement of mixture formation and vortex of intake port was performed by numerically, and the combustion performance of CI engine with optimized blade shape was investigated. To achieve this, 3 types of blade shape were studied under the different air flow mass conditions and the numerical results were investigated in terms of humidification water, moisture concentration, and velocity distributions. Evaporated liquid mass was also compared under various test conditions to reveal the turbulent intensity in an intake port. It was observed that the optimized blade shape can improve the humidification water, moisture concentration, and velocity distributions of intake port inside. The evaporated liquid mass was also increased under the conditions with blade. Especially, low NOx emissions was observed with optimized blade condition.

디젤기관의 흡.배기관 맥동류가 체적효율에 미치는 영향 (The Effect of Intake and Exhaust Pulsating Flow on the Volumetric Efficiency in a Diesel Engine)

  • 이상득;강희영;고대권;안수길
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.11-16
    • /
    • 2006
  • The pressure fluctuation in the intake and exhaust pipe of 4 stroke-cycle diesel engine is caused by reciprocating motion of piston for suction of fresh air and exhaust of burned gas. this gas dynamic effect can be utilized for increase the volumetric efficiency. Many empirical studies have been carried out to investigate the effects of intake pulsating flow on the volumetric efficiency. However, when the gas dynamic effects are utilized for the variable speed engine to increase its performance, The speed range in which the maximum volumetric efficiency is limited and there occurs some difficulties in lay-out of intake system because it become too long. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow becomes more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on the volumetric efficiency. In this paper the effects of pulsating flow of intake and exhaust pipes on volumetric efficiency were examined and evaluated. It was found that volumetric efficiency was affected by pulsating flow of intake and exhaust pipes.

  • PDF

댐의 심층저온수 취수시 수온 성층화 유지 조건에 대한 CFD를 이용한 분석 (Analysis of the Water Temperature Stratification-Maintaining Conditions Using CFD in Case of Intake of Deep, Low-Temperature Water)

  • 이진성;조수;심경종;장문성;손장열
    • 한국태양에너지학회 논문집
    • /
    • 제29권2호
    • /
    • pp.31-38
    • /
    • 2009
  • This study was conducted to forecast inner water temperature strata change by extracting deep water from a dam. For the methodology, the scope wherein the balance between the volume of low-temperature water intake through the virtual water intake opening as installed within the stored water area and the volume of water intake from the surrounding area is not destroyed was calculated through the CFD simulation technique using the computational fluid dynamics(CFD) interpretation method. This study suggested a supplementary method(diffuser) to avoid destroying the water temperature strata, and the effect was reviewed. In case of intake of the same volume, when the velocity of flow of water intake is reduced by increasing the pipe diameter, the destruction of water temperature strata can be minimized. When the area(height) where the intake of water is possible is low, a diffuser for interrupting the vertical direction inflow should be installed to secure favorable water intake conditions in case of water intake on the upper part. This study showed that there was no problem if the intake-enabled, low-temperature area was secured approximately 10m from the bottom when the scope that does not destroy the water temperature strata in case of water intake was forecast using the regression formula.

승용 디젤엔진 소음 기여인자 추출에 관한 연구(I) (The Study on the Noise Contributing Factors Extraction of the Passenger Diesel Engine(I))

  • 김성훈;권용준;고필규;정연욱;임옥택
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.90-98
    • /
    • 2011
  • Noises from diesel engine are the major issues for noise pollution as well as affect customers' purchasing needs to vehicles powered by diesel engine. This study investigates to screen-out main factors that contribute to noises from diesel engine using VGT 2000cc engine developed recently. Changes of fuel temperature, intake temperature and the presence of three way catalyst don't affect the 'Engine Radiation Noise' and the solely three way catalyst influence on the 'Tail Pipe Noise'. Especially, there are no effects of the presence of three way catalyst on torque, which is main subject that should be considered in secondary study.

해양심층수 취수관 부설을 위한 수치해석적 및 실험적 연구 (Numerical and Experimental studies on pipeline laying for Deep Ocean Water)

  • 정동효;김현주;김진하;박한일
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.29-34
    • /
    • 2004
  • Numerical and experimental studies on pipeline laying for intake Deep Ocean Water are carried out. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional pipe equations. Fluid non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Seabed is modeled as elastic foundation with linear spring and damper. Top tension and general configuration of pipeline at a depth are predicted. It is found that control for tension to prevent being large curvature of pipeline is needed on th steep seabed and, it should be considered 23.5 ton of tension at a top of pipe on the process of pipeline laying at 400m of water depth The largest top tension of pipe on condition of the beam sea during pipe laying is shown from the experiment. The results of this study can be contributed to the design of pipeline laying for upwelling deep ocean water.

  • PDF

압축기출구에 공기분사가 터보과급 디젤기관의 성능에 미치는 영향에 관한 연구 (A Study on the Effects of Injected Air into the Compressor Exit for the Performances of a Turbocharged Diesel Engine)

  • 최낙정;이창식
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.796-805
    • /
    • 1995
  • For the purpose of improving performances of a turbocharged diesel engine at low speed, this study investigates the effects of the injected air for the performances and flow characteristics in the intake and exhaust pipes by using the computer simulation with test bed. In the theoretical analysis, the whole flow system, including engine cylinders and intake and exhaust pipes, is calculated numerically by the method of filling and emptying. From the results of this study, the following conclusions may be summarized. Increasing injected air pressure into the pipe of compressor exit brings about the improvement in a performance and flow characteristics of intake and exhaust pipes under full load operating conditions at 1000 rpm of the engine speed, but shows trends of the inferior performances under no load operating conditions at 2000 rpm of the engine speed.

Lax-Wendroff 방법을 이용한 4행정 전기점화 기관의 흡.배기관내의 유동 및 소음특성 해석 (Numerical Simulation of Intake and Exhaust Flows and Noise in 4 Stroke S.I. Engine using the Lax-Wendroff Method)

  • 정수진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.693-701
    • /
    • 1998
  • This study presents result of comparison between two other numerical method method of char-acteristics(MOC) and Lax-Wendroff method(LWM) applied at wave action analysis of intake and exhaust pipe in terms of calculated pressure velocity and emitted noise in the time and the fre-quency domain by means of fast Fourier transform analysis. Particularly FCT(Flux Corrected Transport)scheme is appended to LWM to protest unaceptable overshoots occurring near discon-tinuity. The final conclusion of this study is that MOC should be replaced by a second order finite difference approach because of larger contributions due to high frequency components than the results from the method of characteristics. Clear benefits we can get by change are faster calcula-tion higher accuracy conservation of mass and consistent calculation method.

  • PDF

배기 과급 디젤기관의 흡배기 유동특성에 관한 실험적 연구 (An experimental study on the flow characteristics of intake and exhaust in turbocharged diesel engine)

  • 배원섭
    • 오토저널
    • /
    • 제13권6호
    • /
    • pp.48-56
    • /
    • 1991
  • This paper describes the experimental investigations on the pressure variations of intake and exhaust manifold and mass flow rate through exhaust turbine of turbocharged 6-cylinder diesel engine. The turbocharger of experimental diesel engine is constructed with the radial ty pe exhaust turbine and blower driven by exhaust gases. The pressure variations were measur ed by pressure transducer at the points such as turbine inlet and outlet, compressor inlet and outlet, and inlet pipe and exhaust manifolds for normal and combined charging engines with the change of engine speed. The experimental results of this study show that the mass flow rate of exhaust turbine and the variations of pressure in intake and exhaust manifold are all increased with the increase of engine speed.

  • PDF

상수원수 내 이취미 제거효율 향상을 위한 분말활성탄 투입지점의 평가 (Evaluation on the Locations of Powdered Activated Carbon Addition for Improvement of Taste and Odor Removal in Drinking Water Supplies)

  • 김영일;이상진;배병욱
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.341-348
    • /
    • 2007
  • The efficiency of powdered activated carbon (PAC) for removing taste and odor (T&O) in drinking water supplies is dependent on the contact time, quality of mixing, and the presence of competing compounds. All of these are strongly influenced by the stage in the treatment process at which the PAC is added. In conventional water treatment plants (WTPs), PAC is commonly added into the rapid mixing basin where chemicals such as coagulants, alkaline chemicals, and chlorine, are simultaneously applied. In order to prevent interference between PAC and other water treatment chemicals, alternative locations for addition of PAC, such as at transmission pipe in the water intake tower or into a separated PAC contactor, were investigated. Whatever the location, addition of PAC apart from other water treatment chemicals was more effective for geosmin removal than simultaneous addition. Among several combinations, the sequence 'chlorine-PAC-coagulant' produced the best result with respect to geosmin removal efficiency. Consequently, when PAC has to be applied to cope with T&O problems in conventional WTPs, it is very important to prevent interference with other water treatment chemicals, such as chlorine and coagulant. Adequate contact time should also be given for adsorption of the T&O compounds onto the PAC. To satisfy these conditions, installation of a separated PAC contactor would be the superior alternative if there is space available in the WTP. If necessary, PAC could be added at transmission pipe in the water intake tower and still provide some benefit for T&O treatment.