• Title/Summary/Keyword: Intake Oxygen Concentration

Search Result 37, Processing Time 1.078 seconds

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

Dimethyl Ether 예혼합 압축 착화 엔진에서 흡기중 CO2 농도와 흡기온도 변화가 연소에 미치는 영향 (Effect of Inlet Temperature and CO2 Concentration in the Fresh Charge on Combustion in a Homogeneous Charge Compression Ignition Engine Fuelled with Dimethyl Ether)

  • 배충식;장진영;염기태
    • 대한기계학회논문집B
    • /
    • 제31권6호
    • /
    • pp.514-521
    • /
    • 2007
  • This study focused on the effects of the $CO_2$ gas concentration in fresh charge and induction air temperature on the combustion characteristics of homogeneous charge compression ignition with dimethyl ether (DME) fuel, which was injected at the intake port. Because of adding $CO_2$ in fresh charge, start of auto-ignition was retarded and bum duration became longer. Indicated combustion efficiency and exhaust gas emission were found to be worse due to the incomplete combustion. Partial burn was observed at the high concentration of $CO_2$ in fresh charge with low temperature of induction air. However, indicated thermal efficiency was improved due to increased expansion work by late ignition and prolonged bum duration. Start of auto-ignition timing was advanced with negligible change of burn duration, as induction air temperature increased. Burn duration was mainly affected by oxygen mole concentration in induction mixture. Bum duration was increased, as oxygen mole concentration was decreased.

디젤기관의 연료소비율 및 질소산화물 배출물에 미치는 EGR의 영향에 관한 연구 (A Study on Effect of EGR upon Fuel Consumption Rate and NOx Emission in Diesel Engines)

  • 배명환;임재근
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.76-88
    • /
    • 1995
  • The effects of exhaust gas recirculation(EGR) on the characteristics of NOx emissions and specific fuel consumption rate have been investigated using an eight-cylinder. four cycle. direct injection diesel engine operating at several loads and speeds. The theoretical NO formation concentration is calculated with the equivalence ratio as a parameter of flame temperature to study the effect of EGR on NOx emissions in the diesel combustion. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. It is found that the specific fuel consumption rate is slightly increased with EGR rate. and NOx emissions are markedly reduced owing to the drop of the incoming oxygen concentratio and the increase of equivalence ratio as the EGR rate increases.

  • PDF

수소기관에서 NOx 특성에 관한 연구(2) (The Study on NOx Emission for Hydrogen Fueled Engine(2))

  • 최경호
    • 한국수소및신에너지학회논문집
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2000
  • The goals of this research are to understand the $NO_x$ emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 percent basis heating value of the total fuel. The effects of exhaust gas recirculation(EGR) on $NO_x$ emission were studied. The exhaust gas was recirculated to the intake manifold and the amount of exhaust gas was controlled by the valve. The major conclusions of this work include: (i) the tested engine was run without backfire under 70 percent hydrogen fuel supplemented; (ii) the peak cylinder pressure was decreased with increase of EGR ratio due to the decrease of oxygen concentration in an intake pipe; and (iii) $NO_x$ emission was decreased by 77% with 30% EGR ratio. Therefore, it may be concluded that EGR is effective method to lower $NO_x$ emission in hydrogen fueled diesel engine.

  • PDF

디젤엔진에 있어서 흡기 중에 SO2혼입이 연소 및 배기배출물 특성에 미치는 영향 (Effects of SO2 Mixture in Inlet Air on Combustion and Exhaust Emission Characteristic in diesel engine)

  • 유동훈
    • 동력기계공학회지
    • /
    • 제19권2호
    • /
    • pp.64-69
    • /
    • 2015
  • Marine diesel engines with high thermal efficiency and fuel diversity used for propulsive power have been taking charge of important position on marine transport. However, marine environment has recently focused on emissions such as nitrogen oxide and sulfur oxide which is generated from combustion of low grade fuels. EGR(Exhaust gas recirculation) system is one of effective methods to reduce the nitrogen oxide emission from marine diesel engines. In general, it is considered that recirculating gas influences fuel combustion and emissions in diesel engines. However, along with positive effects of EGR, the EGR system using fuels of including high sulfur concentration should be considered about re-combustion and activation of sulfur dioxide in recirculating gas. Therefore, in experimental study, an author investigates effects of sulfur dioxide mixture concentration in intake air on combustion and exhaust emission characteristics in a direct injection diesel engine. In results, change of sulfur dioxide concentrations in intake air had negligible impact on combustion chamber pressure, rate of heat release and emissions compared with effects of oxygen decreasing and carbon dioxide increasing of EGR.

폐회로 디젤엔진의 연소특성에 관한 고찰 (An Investigation on Combustion Characteristics of The Closed Cycle Diesel Engine)

  • 박신배
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.60-69
    • /
    • 2000
  • In order to obtain underwater or underground power sources, the closed cycle diesel engine is operated in the non air-breathing circuit system where the major species of the working fluid include oxygen, argon, and recycled exhaust gas. In the present study, the closed cycle diesel engine is designed to operate at the intake pressure between 2 and 3 bar. For operating in the open-cycle and closed-cycle situations, experimental apparatus using this diesel engine is made with ACAP as data acquisition system. In open, semi-open, and closed cycle modes, the predicted p-$\theta$ and P-V are compared with load bank power. Computation have been performed for wide range of major experimental parameters such as the specific fuel and oxygen concentrations, fuel conversion efficiency and polytropic exponent, IMEP and maximum cylinder pressure.

  • PDF

디젤 저온연소 운전 영역에서 흡기압이 엔진 성능에 주는 영향 (Effect of Intake Pressure on Emissions and Performance in Low Temperature Combustion Operation of a Diesel Engine)

  • 이선엽;장재훈;이용규;오승묵;김용래;김득상
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.88-94
    • /
    • 2012
  • One of the effective ways to reduce both $NO_x$ and PM at the same time in a diesel CI engine is to operate the engine in low temperature combustion (LTC) regimes. In general, two strategies are used to realize the LTC operation-dilution controlled LTC and late injection LTC - and in this study, the former approach was used. In the dilution controlled regime, LTC is achieved by supplying a large amount of EGR to the cylinder. The significant EGR gas increases the heat capacity of in-cylinder charge mixture while decreasing oxygen concentration of the charge, activating low temperature oxidation reaction and lowering PM and $NO_x$ emissions. However, use of high EGR levels also deteriorates combustion efficiency and engine power output. Therefore, it is widely considered to use increased intake pressure as a way to resolve this issue. In this study, the effects of intake pressure variations on performance and emission characteristics of a single cylinder diesel engine operated in LTC regimes were examined. LTC operation was achieved in less than 8% $O_2$ concentration and thus a simultaneous reduction of both PM and $NO_x$ emission was confirmed. As intake pressure increased, combustion efficiency was improved so that THC and CO emissions were decreased. A shift of the peak Soot location was also observed to lower $O_2$ concentration while $NO_x$ levels were kept nearly zero. In addition, an elevation of intake pressure enhanced engine power output as well as indicated thermal efficiency in LTC regimes. All these results suggested that LTC operation range can be extended and emissions can be further reduced by adjusting intake pressure.

순환여과시스템에서 사육밀도와 용존산소 농도가 돌돔(Oplegnathus fasciatus)의 성장과 혈액성상에 미치는 영향 (Effects of Stocking Density and Dissolved Oxygen Concentration on the Growth and Hematology of the Parrotfish Oplegnathus fasciatus in a Recirculating Aquaculture System (RAS))

  • 김병기
    • 한국수산과학회지
    • /
    • 제44권6호
    • /
    • pp.747-752
    • /
    • 2011
  • The parrotfish Oplegnathus fasciatus is a sub-tropical species that is difficult to culture during the winter in South Korea. As a result, a recirculating aquaculture system (RAS) was developed to rear parrotfish. This study investigated the effects of stocking density and dissolved oxygen (DO) concentration on the growth and hematology of the parrotfish in the RAS. The experimental stocking densities were 5 (SD05), 10 (SD10), 15 (SD15), and 20 kg/m3 (SD20) total body weight to tank water volume. As the stocking density increased, the mean weight gain, feed efficiency, and specific growth rate tended to decrease. However, SD10 and SD15 did not differ statistically from SD05 in feed efficiency (P>0.05). Although better growth was achieved in SD05, SD10 and SD15 appeared to be acceptable, practically and economically, in terms of feed efficiency. The experimental DO concentration ranges were 3-4 (DO3), 5-6 (DO5), and 7-8 mg/L (DO7). The mean weight gain and survival tended to increase with the DO concentration, but there were no differences among treatments (P>0.05). Although the feed efficiency did not differ among the treatments, the specific growth rates and daily feed intake increased with the DO concentration and were the highest in DO7 (P<0.05). The cortisol concentration was the highest in DO3 (P<0.05), while there was no difference between DO5 and DO7 (P>0.05).

압축착화 엔진에서 DME-가솔린 혼소 운전 특성에 관한 연구 (Operating Characteristics of Dual-fuel Combustion with DME and Gasoline in a Compression Ignition Engine)

  • 김기현;배충식
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.157-164
    • /
    • 2014
  • Dual fuel combustion strategy with di-methl ether (DME) and gasoline was tested in a compression ignition engine. Characteristics of combustion and emissions were analyzed with the variation of engine operating parameters such as fuel proportion, DME injection timing, intake oxygen concentration, DME injection pressure and so forth. Gasoline was injected into the intake manifold to form the homogeneous mixture with intake charge and DME was injected directly into the cylinder at the late compression stroke to ignite the homogeneous gasoline-air mixture. Dual fuel combustion strategy was advantageous in achievement of higher thermal efficiency and low NOx emission compared with DME single fuel combustion. Higher thermal efficiency was attributed to the lower heat tranfer loss from the decreased combustion temperature since the amount of lean premixed combustion was increased with the larger amount of gasoline proportion. Lower NOx emissions were also possible by lowering the combustion temperature.

초단열 압축스파크 점화개질기를 이용한 바이오 합성가스 생산 연구 (Research of Biofuel Syngas Production Using Superadiabatic Compression Spark Ignition Reformer)

  • 임문섭;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.42-49
    • /
    • 2010
  • Increasing environmental concerns regarding the use of fossil fuels and global wanning have prompted researcher to investigate alternative fuels. The purpose of this study is to investigate the syngas production by biogas reforming using a compression spark ignition engine. The parametric screening studies were carried out according to the variations of oxygen enrichment rate, biogas $CO_2$ ratio, intake gas temperature, and engine revolution. When the oxygen enrichment rate and input gas temperature increased, hydrogen and carbon monoxide were increased. But the biogas $CO_2$ ratio and engine revolution increased, the syngas were reduced. For the reforming of methane 100% only, generation of hydrogen and carbon monoxide was 58% and 17%, respectively. However when the biogas $CO_2$ ratio was 40%, hydrogen and carbon monoxide concentration were about 20% each.