• Title/Summary/Keyword: Insulin Resistance

Search Result 661, Processing Time 0.027 seconds

Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE) Cohorts

  • Shim, Unjin;Kim, Han-Na;Sung, Yeon-Ah;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.195-202
    • /
    • 2014
  • Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, $52.2{\pm}8.9years$ ; body mass index, $24.6{\pm}3.2kg/m^2$). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < $5{\times}10^{-6}$), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < $1.38{\times}10^{-7}$, Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.

Glucosamine increases vascular contraction through activation of RhoA/Rho kinase pathway in isolated rat aorta

  • Kim, Do-Hyung;Seok, Young-Mi;Kim, In-Kyeom;Lee, In-Kyu;Jeong, Seong-Yun;Jeoung, Nam-Ho
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.415-420
    • /
    • 2011
  • Diabetes is a well-known independent risk factor for vascular disease. However, its underlying mechanism remains unclear. It has been reported that increased influx of the hexosamine biosynthesis pathway (HBP) induces O-GlcNAcylation of proteins, leading to insulin resistance. In this study, we determined whether or not O-GlcNAc modification of proteins could increase vessel contraction. Using an endothelium-denuded aortic ring, we observed that glucosamine induced OGlcNAcylation of proteins and augmented vessel contraction stimulated by U46619, a thromboxane $A_2$ agonist, via augmentation of the phosphorylation of MLC20$MLC_{20}$, MYPT1(Thr855), and CPI17, but not phenylephrine. Pretreatment with OGT inhibitor significantly ameliorated glucosamine-induced vessel constriction. Glucosamine treatment also increased RhoA activity, which was also attenuated by OGT inhibitor. In conclusion, glucosamine, a product of glucose influx via the HBP in a diabetic state, increases vascular contraction, at least in part, through activation of the RhoA/Rho kinase pathway, which may be due to O-GlcNAcylation.

Effects of fermented ginseng root and ginseng berry on obesity and lipid metabolism in mice fed a high-fat diet

  • Li, Zhipeng;Kim, Hee Jung;Park, Myeong Soo;Ji, Geun Eog
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.312-319
    • /
    • 2018
  • Background: Previous studies have shown that both ginseng root and ginseng berry exhibit antiobesity and antidiabetic effects. However, a direct comparison of the efficacy and mechanisms between the root and the berry after oral administration remains to be illuminated. Methods: In this study, we observed the effects of fermented ginseng root (FGR) and fermented ginseng berry (FGB) on obesity and lipid metabolism in high-fat diet induced obese mice. Results: FGR and FGB significantly inhibited the activity of pancreatic lipase in vitro. Both FGR and FGB significantly suppressed weight gain and excess food intake and improved hypercholesterolemia and fatty liver, while only FGR significantly attenuated hyperglycemia and insulin resistance. Both FGR and FGB significantly inhibited the mRNA expression of Ldlr and Acsl1 while FGR also significantly inhibited expression of Cebpa and Dgat2 in liver. FGR significantly decreased the epididymal fat weight of mice while FGB significantly inhibited the mRNA expression of genes Cebpa, Fas, Hsl, Il1b, and Il6 in adipose tissue. Conclusion: Saponin from both FGR and FGB had a beneficial effect on high-fat diet-induced obesity. Compared to FGB, FGR exhibited more potent antihyperglycemic and antiobesity effect. However, only FGB significantly inhibited mRNA expression of inflammatory markers such as interleukins $1{\beta}$ and 6 in adipose tissue.

Association of Diabetes with Serum Vitamin D in Korean Adults : Analysis of the Korea National Health and Nutrition Examination Survey (2013~2014) (한국 성인 남녀에서 당뇨병 유병률과 혈중 비타민 D 농도와의 관련성 : 제6기 국민건강영양조사(2013~2014)에 근거하여)

  • Kim, Arang;Yun, Jung-Mi
    • Journal of the Korean Dietetic Association
    • /
    • v.23 no.1
    • /
    • pp.39-53
    • /
    • 2017
  • Insufficient vitamin D intake is a major health problem around the world. Recently, many studies have suggested that vitamin D intake may influence insulin resistance. However, little is known about the association between vitamin D and diabetes mellitus. The aim of this study was to investigate the association between serum 25-hydroxy vitamin D (25(OH)D) levels and diabetes mellitus in Korean adults. This study was a cross-sectional analysis of 3,686 participants of the Korean National Health and Nutrition Examination Survey (KNHANES) 2013~2014 aged 19 years and higher. The results showed that the mean serum 25-hydroxy vitamin D (25(OH)D) level in Korean adults was 16.77 ng/mL, and 74.2% of them had an insufficient serum 25-hydroxy vitamin D (25(OH)D) level (below 20 ng/mL). In normal and pre-diabetic groups, the serum 25-hydroxy vitamin D (25(OH)D) level significantly increased with age (P<0.001), but there was no significant difference relative to age in the diabetic group. Low vitamin D levels (25-hydroxy vitamin D < 10 ng/mL) were associated with increased fasting blood glucose levels, compared with optimal vitamin D levels (25-hydroxy vitamin D > 30 ng/mL), after adjusting for variables that may affect fasting blood glucose, but this result was not significant. In conclusion, although no significant association was observed between diabetes prevalence and vitamin D levels in this study, further studies are needed because the effect of vitamin D on diabetes remains controversial. This nutrient plays a crucial role in the body, and levels are insufficient in the Korean population.

Contemporary Issues Surrounding Folic Acid Fortification Initiatives

  • Choi, Jeong-Hwa;Yates, Zoe;Veysey, Martin;Heo, Young-Ran;Lucock, Mark
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.247-260
    • /
    • 2014
  • The impact of folate on health and disease, particularly pregnancy complications and congenital malformations, has been extensively studied. Mandatory folic acid fortification therefore has been implemented in multiple countries, resulting in a reduction in the occurrence of neural tube defects. However, emerging evidence suggests increased folate intake may also be associated with unexpected adverse effects. This literature review focuses on contemporary issues of concern, and possible underlying mechanisms as well as giving consideration the future direction of mandatory folic acid fortification. Folate fortification has been associated with the presence of unmetabolized folic acid (PteGlu) in blood, masking of vitamin $B_{12}$ deficiency, increased dosage for anti-cancer medication, photo-catalysis of PteGlu leading to potential genotoxicity, and a role in the pathoaetiology of colorectal cancer. Increased folate intake has also been associated with twin birth and insulin resistance in offspring, and altered epigenetic mechanisms of inheritance. Although limited data exists to elucidate potential mechanisms underlying these issues, elevated blood folate level due to the excess use of PteGlu without consideration of an individual's specific phenotypic traits (e.g. genetic background and undiagnosed disease) may be relevant. Additionally, the accumulation of unmetabolized PteGlu may lead to inhibition of dihydrofolate reductase and other enzymes. Concerns notwithstanding, folic acid fortification has achieved enormous advances in public health. It therefore seems prudent to target and carefully monitor high risk groups, and to conduct well focused further research to better understand and to minimize any risk of mandatory folic acid fortification.

Anti-obesity Effects of Barley Sprout Young Leaf on 3T3-L1 Cells and High-fat Diet-induced Obese Mice (지방분화가 유도된 3T3-L1 세포와 고지방식이로 유도된 마우스에서 보리순 물추출물의 항비만 효과)

  • Kang, Byoung Man;Sim, Mi Ok;Kim, Min Suk;Yoo, Seung Jin;Yeo, Jun Hwan;Jung, Won Seok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.367-374
    • /
    • 2017
  • Background: An imbalance in energy intake and expenditure can cause obesity, which is a major risk factor for chronic diseases such as heart disease, type 2 diabetes, insulin resistance, cancers and hyperlipidemia. Methods and Results: In this study, we evaluated the anti-obesity effects of a water extract from the young leaves of barley sprout (BS) in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice (HF). Lipid accumulation measurement indicates that BS markedly inhibited adipogenesis by reducing lipid droplet production in a dose-dependent manner. Furthermore, the mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor-${\gamma}$ and fatty acid synthetase, CCAAT/enhancer binding protein-${\alpha}$ and fatty acid binding protein 4 in 3T3-L1 cells was significantly inhibited by BS treatment. In an in vivo test, the BS-administered group of HFD-induced mice showed less body weight gain, and lower liver and epididymal white adipose tissue weights. The BS-treated mice showed decreased serum levels of leptin and lipids compared to untreated HFD mice and the levels of adiponectin and the HDL-cholesterol/total cholesterol ratio increased. These results indicate that BS inhibits body fat accumulation by reducing the mRNA expression of lipogenesis transcription factors and increasing serum adipokine concentration in in vitro and in vivo tests. Conclusions: BS reduced high fat diet-induced weight gain and had a positive effect on dyslipidemia.

$PPAR_{\gamma}$ Ligand-binding Activity of Fragrin A Isolated from Mace (the Aril of Myristica fragrans Houtt.)

  • Lee, Jae-Young;Kim, Ba-Reum;Oh, Hyun-In;Shen, Lingai;Kim, Naeung-Bae;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1146-1150
    • /
    • 2008
  • Peroxisome proliferator-activated receptor-gamma ($PPAR_{\gamma}$), a member of the nuclear receptor of ligand-activated transcription factors, plays a key role in lipid and glucose metabolism or adipocytes differentiation. A lignan compound was isolated from mace (the aril of Myristica fragrans Houtt.) as a $PPAR_{\gamma}$ ligand, which was identified as fragrin A or 2-(4-allyl-2,6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-propane. To ascertain whether fragrin A has $PPAR_{\gamma}$ ligand-binding activity, it was performed that GAL-4/$PPAR_{\gamma}$ transactivation assay. $PPAR_{\gamma}$ ligand-binding activity of fragrin A increased 4.7, 6.6, and 7.3-fold at 3, 5, and $10{\mu}M$, respectively, when compared with a vehicle control. Fragrin A also enhanced adipocytes differentiation and increased the expression of $PPAR_{\gamma}$ target genes such as adipocytes fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and phosphoenol pyruvate carboxykinase (PEPCK). Furthermore, it significantly increased the expression level of glucose transporter 4 (GLUT4). These results indicate that fragrin A can be developed as a $PPAR_{\gamma}$ agonist for the improvement of insulin resistance associated with type 2 diabetes.

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.

Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.294-301
    • /
    • 2013
  • In this study, we examined the hepatic anti-steatosis activity of carnosic acid (CA), a phenolic compound of rosemary (Rosmarinus officinalis) leaves, as well as its possible mechanism of action, in a high-fat diet (HFD)-fed mice model. Mice were fed a HFD, or a HFD supplemented with 0.01% (w/w) CA or 0.02% (w/w) CA, for a period of 12 weeks, after which changes in body weight, blood lipid profiles, and fatty acid mechanism markers were evaluated. The 0.02% (w/w) CA diet resulted in a marked decline in steatosis grade, as well as in homeostasis model assessment of insulin resistance (HOMA-IR) index values, intraperitoneal glucose tolerance test (IGTT) results, body weight gain, liver weight, and blood lipid levels (P < 0.05). The expression level of hepatic lipogenic genes, such as sterol regulating element binding protein-1c (SREBP-1c), liver-fatty acid binding protein (L-FABP), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS), was significantly lower in mice fed 0.01% (w/w) CA and 0.02% (w/w) CA diets than that in the HFD group; on the other hand, the expression level of ${\beta}$-oxidation-related genes, such as peroxisome proliferator-activated receptor ${\alpha}$ (PPAR-${\alpha}$), carnitine palmitoyltransferase 1 (CPT-1), and acyl-CoA oxidase (ACO), was higher in mice fed a 0.02% (w/w) CA diet, than that in the HFD group (P < 0.05). In addition, the hepatic content of palmitic acid (C16:0), palmitoleic acid (C16:1), and oleic acid (C18:1) was significantly lower in mice fed the 0.02% (w/w) CA diet than that in the HFD group (P < 0.05). These results suggest that orally administered CA suppressed HFD-induced hepatic steatosis and fatty liver-related metabolic disorders through decrease of de novo lipogenesis and fatty acid elongation and increase of fatty acid ${\beta}$-oxidation in mice.

Effects of Dangkwisoo-San, Ginger and Curcumin on Transient Receptor Potential Melastatin 7 Channels (당귀수산, 생강, 커큐민의 대사성 질환과 관련된 일과성 수용체 전압 이온통로조절에 관한 연구)

  • Kim, Byung Joo
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2018
  • Objectives: Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP) melastatin 7 (TRPM7) channels have been associated with the development of cardiovascular diseases. The purpose of this study was to investigate the effects of Dangkwisoo-san, ginger and curcumin on TRPM7 channel. Methods: Human embryonic kidney (HEK) 293 cells stably transfected with the TRPM7 expression vectors were maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, $5{\mu}g/mL$ blasticidin, and 0.4 mg/mL zeocin in a humidified 20% $O_2$/10% $CO_2$ atmosphere at $37^{\circ}C$. Whole-cell patch clamp recordings were obtained using an Axopatch 700B amplifier and pClamp v.10.4 software, and signals were digitalized at 5 kHz using Digidata 1422A. Results: Dangkwisoo-san extract (100, 200, 300, 400, and $500{\mu}g/mL$) inhibited the outward and inward TRPM7 whole-cell currents at dose dependent manner and the half maximal inhibitory concentration $(IC)_{50}$ of Dangkwisoo-san was $218.3{\mu}g/mL$. Also, ginger extract (100, 200, 300, 400, and $500{\mu}g/mL$) inhibited the outward and inward of TRPM7 whole-cell currents in a dose dependent manner and the $IC_{50}$ of ginger was $877.2{\mu}g/mL$. However, curcumin had no effects on TRPM7 whole-cell currents. Conclusions: These results suggest that both Dangkwisoo-san and ginger have good roles to inhibit the TRPM7 channel, suggesting that Dangkwisoo-san and ginger are considered one of the candidate agents for the treatment of metabolic syndrome such as cardiovascular disease.