• Title/Summary/Keyword: Insulation layer

Search Result 387, Processing Time 0.028 seconds

A Study on the Thermal Characteristics of BIPV Applied on Curtain Wall Spandrel (스팬드럴 적용 BIPV의 후면 열 특성에 관한 연구)

  • Lee, Sang-Gil;Kang, Tae-Woo;Jang, Han-Bin;Kang, Gi-Hwan;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.120-126
    • /
    • 2012
  • BIPV is applied to buildings in various forms. However, there are some aspects of consideration in applying PV systems in buildings, such as attaching methods, PV electrical efficiency, appearance and so on. BIPV can be installed on curtain wall spandrel as finishing material, which may combine with insulation. The thermal characteristic of spandrel with BIPV has rarely been studied; the temperature of air space between PV module and insulation layer affects both the electrical behavior of PV module and the energy load in a building. This paper aims to analyse the temperature variation of the layers in BIPV spandrels. In this paper, the temperature of layers, including the air space and PV module, was measured for three different type of BIPV applications on spandrel. The results show that the temperature of air layer for the spandrel with G/G(2) type BIPV module on October was the highest among other months.

Field Application of Surface Insulation Curing Method to Cold Weather Concreting (한중콘크리트의 현장 표면단열 양생공법 시공사례 연구)

  • Kim Jong-Back;Lim Choon-Goun;Han Min-Cheol;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • This study investigates the field application of surface insulation curing method, which combined double layer bubble sheet(DBS) and thick-curing-material(TCM) for cold weather concreting. According to the test, deck slab, curing only upper section with DBS and TCM, does not make big different temperature history with that, curing both upper and bottom section during daily average temperature 6.5t. It is concluded that combination of DBS and TCM in only upper section can be safely cured in early period of time during cold water concreting. The field test was carried out with this favourable data. The upper deck slab was insulated by combination of DBS and TCM, and the construction was surrounded by tent. in order to protect from outside wind. The test result shows that the lowest temperature of deck slab indicated 6$ ^{circ}C $. It demonstrated that this curing method can resist early frost and save construction cost in the side of management and saving labor cost, compared with previous method. In addition, the column specimen, combined both form and bubble board, exhibited favorable temperature history, due to internal hydration heat insulation effect.

  • PDF

LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM (극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션)

  • Park, Bum-Jin;Lee, Hee-Bum;Rhee, Shin-Hyung;Bae, Jun-Hong;Lee, Kyung-Won;Jeong, Wang-Jo;An, Sang-Jun
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.9-18
    • /
    • 2009
  • The cargo containment system (CCS) for ships carrying cryogenic fluid consists of at least two levels of barriers and insulation layers. It is because, even though there is a small amount of leak through the primary barrier, the liquid tight secondary barrier blocks further leakage of the cryogenic fluid. However, once the secondary barrier is damaged, it is highly possible that the leaked cryogenic fluid flows through the flat joint made of glass wool and reaches the inner hull of the ship. The primary objective of the present study is to investigate the influence of the damage extent in the secondary barrier on the amount of leaked cryogenic fluid reaching the inner hull and the temperature distribution there. Simulation results using a computational fluid dynamics tool were compared with the experimental data for the leaked cryogenic fluid flow and evaporation in the secondary insulation layer. The experimental and computational results suggest that, unless there is a massive leak, the cryogenic fluid mostly evaporates in the insulation layer and does not reach the inner hull in the state of liquid.

Analysis of Heat Transfer Characteristics on Multi-layer Insulating Curtains Coated with Silica Aerogel (실리카 에어로겔이 흡착된 다겹보온커튼의 전열 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2019
  • The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.

Effects of Covering Materials and Methods on Heat Insulation of a Plastic Greenhouse and Growth and Yield of Tomato (플라스틱하우스의 보온피복 재료 및 방법이 보온력과 토마토의 생육 및 수량에 미치는 영향)

  • Kwon Joon Kook;Lee Jae Han;Kang Nam Jun;Kang Kyung Hee;Choi Young Hah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.251-257
    • /
    • 2004
  • This experiment was carried out to investigate the effects of different covering materials and methods on heat insulation of a plastic greenhouse, growth and yield of tomato. Night air and soil temperatures in a double-layer greenhouse with external multifold thermal cover (MTC; eight-ounce cassimere+four-fold polyform+double-fold non-woven fabric+single-fold polypropylene covering were about $1^{\circ}C$ lower than in that with internal MTC covering, but about $3^{\circ}C$ higher than in that with an EVA film screen. Tomato yield in the external MTC covering increased by $2\%\;and\;19\%$ as compared to that in the internal MTC covering and the non-covering of MTC, respectively, due to its high light transmission and insulation effect. Night air temperatures in a double-layer greenhouse with external MTC covering and with thermal screen (polyester plus aluminium) were $2.2^{\circ}C\;and\;4.5^{\circ}C$ higher than those in a double-layer greenhouse with an external MTC covering and in a double-layer greenhouse equipped an EVA film screen, respectively. Tomato yield in the treatment with external MTC covering and a thermal screen was $18\%\;and\;37\%$ greater than that in the external MTC covering and in an EVA film screen, respectively. Results indicate that tomato could be grown without heating or with minimal heating in a double-layer greenhouse covered with MTC and a thermal screen during the winter season in sourthern regions of Korea.

Determination of dynamic stiffness of materials used under floating floors in dwellings (거주공간에서 뜬바닥 구조에 사용하는 동탄성계수 측정방법)

  • Jeong, G.C.;Oh, Y.K.;Kim, S.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.945-949
    • /
    • 2002
  • This part of specifies the method for determining the dynamic stiffness of resilient materials used under floating floors. Dynamic stiffness is one of the parameters that determine the sound insulation of such floors in dwellings. This part applies to the determination of dynamic stiffness per unit area of resilient materials with smooth surfaces used in a continuous layer under floating floors in dwellings

  • PDF

Determination of dynamic stiffness for materials used under floating floors in dwellings (거주공간에서 뜬바닥 구조에 사용하는 동탄성계수 측정방법)

  • G. C. Jeong;Y. K. Oh;Kim, S. W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.392.1-392
    • /
    • 2002
  • This part of specifies the method for determining the dynamic stiffness of resilient materials used under floating floors. Dynamic stillness is one of the parameters that determine the sound insulation of such floors in dwellings. This part applies to the determination of dynamic stiffness per unit area of resilient materials with smooth surfaces used in a continuous layer under floating floors in dwellings.

  • PDF

Temperature History of Concrete According to the Covering Method of Double Layer Bubble Sheet (이중버블시트의 포설방법에 따른 콘크리트의 온도이력특성)

  • Baek, Dae-Hyun;Son, Ho-Jung;Hong, Seak-Min;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.71-72
    • /
    • 2010
  • The study is compared temperature history and strength of concrete followed by covering method of insulation curing of cold weather concrete with double bubble sheet. The results were as follows. First of all, in temperature history of concrete, the internal temperature of concrete fell down to $0^{\circ}C$ before/after 60 hours, having nothing to do with covering method. The study could see that, when sheet was isolated, it fell down to low temperature quickly in early curing. When the study measured compressive strength of core specimen, there were no large differences among placing methods. However, compressive strength fell down in all ages when sheet was isolated.

  • PDF

Effects of Boundary Damping in the Prediction of Sound Insulation Performance of the Double Partition with Air-gap (중공 이중판의 차음손실 예측에 있어서 경계손실이 미치는 영향)

  • 이종화;이정권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.873-876
    • /
    • 2002
  • It has been reported that discrepancies exist in the case of double panels with an air layer when the measured sound transmission loss is compared with the calculated values. It has been known that the cause of this discrepancy is in major from the unavoidable dips associated with the double wall resonances. In this work, several correction methods to make up for such resonances are studied. In particular, the ‘boundary damping’concept is revisited and its effects are discussed by comparing with measured values. It is shown that the correction methods are necessary for the sound insulation analysis of double partitions with an air layer, in order to ascertain the quantitative correlation between measured and predicted values.

  • PDF