• Title/Summary/Keyword: Insulation classes

Search Result 6, Processing Time 0.017 seconds

Establishment of Design Standard and Analysis of Insulation Property for Underground Space in Architecture (건축물의 지하공간을 위한 단열재의 특성 분석 및 설계 기준 수립)

  • Hwang, Min-Kyu;Cho, Woo-Jin;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • The purpose of this study is to analyze an insulation property and to establish a design standard for the underground space in architecture. Insulation materials for this study are 12 kinds of Insulation which qualified KS standards(3 classes of EPS type 1, 3 classes of EPS type 2(Neopor), 3 classes of XPS and 3 classes of PU Boards). For insulation materials of underground space, insulating and water tightening property are desired. So conductivity for insulating and water absorption for water tightening are measured in this study. Temperature, insulation is exposed to in the underground space, is different from temperature above the ground. Conductivity is measured in a temperature of $17^{\circ}C$, $20^{\circ}C$, $23^{\circ}C$ and $26^{\circ}C$. In KS standards, water absorption are measure after 24 hours, but insulation is exposed to water for a long time in the underground. So after 110 days, water absorption are measured. As time goes by, increasing of water absorption means decreasing of water tightening and insulating. So after water absorption had measured for 110 days, conductivity has measured again. As a result, XPS is selected as optimized insulation for underground. And Conductivity of XPS insulation with water should be added by 20%.

Classification of Noise Insulation Performance in Apartment Buildings through Noise survey and Auditory Experiment (설문조사와 청감실험을 통한 공동주택 차음성능의 평가등급 설정)

  • Ryu, Jong-Kwan;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.666-669
    • /
    • 2005
  • Social noise survey and auditory experiment on residential noises such as floor impact, air-borne, bathroom, drainage and traffic noises were conducted to classily a noise insulation Performance in apartment building. The survey results showed that annoyance among subjective responses to residential noises was most greatly affecting to satisfaction with noises. In the survey, boundary limit between satisfaction and dissatisfaction was also determined. Auditory experiments was also undertaken to determine noise insulation performance according to the percent of satisfaction for individual noise source. Result of auditory experiment showed that the noise insulation performance for floor impact, airborne, drainage and traffic noise corresponding to 40 % satisfaction is 49 dB (L$_{i,Fmax,AW}$), 48 dB (R'w), N-41, and N-40, respectively. Finally, classes of noise insulation performance in apartment building were proposed according to satisfaction with noises

  • PDF

A Study on the Assignment of the Vibration Classes to the Power Transformers in Operation (154[kV])

  • Kim, Young-Dal
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.52-60
    • /
    • 2009
  • High reliability is essential for power transformers, and their fault causes are reportedly more related to mechanical causes than electrical ones. The transformer soundness judgment currently depends only on the electrical insulation characteristic and the chemical test of the insulation oil, so that there are few fundamental measures against the frequent mechanical damages and failures in transformers. The mechanical soundness judgment techniques are conducted through processes that include structural analysis and vibration resistance treatment during the manufacturing process of each manufacturer, but the vibration is not tested during the design, manufacturing, and operating processes since there are no detailed technical standards and procedures on the vibration problem, which are important in terms of maintenance. Therefore, in this study, vibration phenomena were measured from the 32 power transformers in operation in the substations under the Daejeon Power Transmission District Office of the Korean Electric Power Corporation (KEPCO). The vibration was measured at 24 sections ($6{\times}4$) on one side, and only the maximum values were selected from the measured vibration values. This was because the maximum vibration values more significantly affect the soundness of the transformer than the average vibration values. The vibration classes were given considering the maximum vibration based on ISO 10016-1 (2001).

Characteristic of Current and Temperature according to Normal and Abnormal Operations at Induction Motor of 2.2 kW and 3.7 kW (2.2 kW와 3.7 kW 유도전동기의 정상과 구속운전에 따른 전류 및 온도 특성)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2023
  • This study analyzed the current and temperature characteristics of major components of an induction motor during normal and abnormal operations as functions of the difference in the rated capacities of medium and large-sized motors widely used in industrial settings. The temperature rise equation of the induction motor winding was derived through locked-rotor operation experiments and linear regression analysis. When the ambient temperature is 40 ℃, the time to reach 155 ℃, the temperature limit of the insulation class (F class) of the winding of the induction motor, was confirmed to be 48 seconds for the 2.2 kW induction motor and 39 seconds for the 3.7 kW induction motor. This means that when the rated capacity is large or the installation environment is high temperature, the time to reach the temperature limit of the insulation class during locked-rotor operation is short, and the risk of insulation deterioration and fire is high. In addition, even if the EOCR (Electronic Over Current Relay) is installed, if the setting time is excessively set, the EOCR does not operate even if the normal and locked-rotor operation of the induction motor is repeated, and the temperature limit of the insulation grade of the winding of the induction motor is exceeded. The results of this study can be used for preventive measures such as the promotion of electrical and mechanical measures for the failure of induction motors and fire prevention in industrial sites, or the installation of fire alarm systems.

Analysis of the Maximum Heat Release Rate in Accordance with the Test Method of the Flame Retardant Performance for Pipe Insulation (배관용 보온재의 난연 성능 시험방법에 따른 최대 발열량 분석)

  • You, Woo Jun;Park, Jung Wook;Sin, Yeon Je;Park, Hyeong Gyu;Lim, Ohk Kun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.18-25
    • /
    • 2020
  • In this study, the heat release rate of pipe insulation is analyzed by considering the installation status in accordance with the standards ISO 20632 and NFPA 274. The flame retardation rate was evaluated for six types of test samples: polyethylene foam covered with beaten silver (PE(S)), PE foam tapped (PE(N)), elastomeric closed cell thermal insulation (rubber), Japanese PE foam (PE(J)), Japanese polyurethane foam (PU(J)), and Japanese styro form (ST(J)) by EN 13501-1 and fire growth curve. The results show that PU(J), PE(J), and PE(N) were Class E and ultra-fast, NFPA 274 test standards for Class D and Fast, and PE(S) by ISO 20632 were Class C and Slow, and Rubber and ST(J) were Classes and Low. However, the changes in the time-averaged maximum heat release rate for each test standard (ISO 20632 and NFPA 274) to evaluate the flame retardation rate differed among identical materials. This means that the fundamental study is necessary to analyze the more accurate reasons.

Development of 25.8kV class solid insulated switchgear (25.8kV 고체절연스위치기어 개발)

  • Lee, J.H.;Ma, J.H.;Yu, L.;Lee, J.G.;Won, S.Y.;Lee, S.W.;Kim, Y.G.;Kil, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.226-228
    • /
    • 2008
  • In recent years, the companies of electric power equipment for MV and HV classes trend to develop the eco-friendly insulated(solid, eco-gas, air etc.) switchgear which replaces existent SF6 gas insulated switchgear due to environmental problems such as global warming and so on. This paper makes reference to the newly developed Solid Insulated Switchgear (SIS) which uses the eco-friendly material such as epoxy for insulation. The insulation of the solid insulated switchgear (SIS) is composed of an epoxy, vacuum and air. The solid insulated switchgear (SIS) is a slate of the art product. The advantages of SIS are advanced reliability, economical efficiency, safety, maintenance free, reduction of installation area and the protection of environment. The solid insulated switchgear (SIS) is FE Analyzed such as electromagnetic, mechanical, thermal and fluid in order to find the optimal design. Thens SIS has been verified by international standard test. (IEC 62271 - 100 and so on.) As a result of this, the solid insulated switchgear (SIS) has been estimated as an alternative for eco-friendly MV class switchgear.

  • PDF