• 제목/요약/키워드: Insulation Wall Panel System

검색결과 15건 처리시간 0.021초

사무용 건물의 에너지 절감을 위한 요소별 성능 분석 및 디자인 전략에 관한 연구 (Study of Design Strategy to Reduce Energy Consumption in a Standard Office Building)

  • 양자강;김철호;김강수
    • KIEAE Journal
    • /
    • 제16권2호
    • /
    • pp.23-31
    • /
    • 2016
  • Purpose: Recently energy consumption is rapidly increasing due to continuous development of social evolution in various field. In this situation, there is a lot of effort to reduce this energy consumption in many ways, especially in building energy. Preceding studies already started to analyze the housing area such as zero energy house and passive house by researching annual building energy consumption, but to apply the results of housing to office building is insufficient since it has different consumption tendency. Method: In this study, eQuest program was used for simulation and the base model is selected among standard office building in ASHRAE 90.1. Variables are divided into passive and active factors for comparison. Result: In passive factors, glazing system showed the highest energy saving rate by 21.3% with triple low-e glass and enhancing wall u-value showed the lowest energy saving rate by 3.6% with 0.15 m2/K. In active factors, VAV system showed 30.9% energy saving rate when compared to CAV system, and heat exchanger showed 10.2% energy saving rate. For regeneration energy part, photovoltaic panel generated 10.4% of base annual energy usage.

건식공법을 이용한 건축물의 외벽 화재 확산의 실험적 연구 (An Experimental Study on Fire Spreading External Wall of Buildings Using Dry Construction Method)

  • 박정우;조남욱
    • 한국화재소방학회논문지
    • /
    • 제32권4호
    • /
    • pp.75-85
    • /
    • 2018
  • 2016년 6월 영국 그렌펠 타워 화재는 외단열에 의한 수직화재확산으로 인한 대표적인 피해사례이다. 외단열 공법에서 많이 사용되는 유기단열재는 단열성능이 좋은 반면 화재에 취약한 단점이 있다. 알루미늄 복합패널을 외벽 마감재로 사용하는 외단열 공법에서 알루미늄 내부에 사용되는 플라스틱은 수직 화재확산의 원인으로 지목되고 있다. 알루미늄복합패널을 외벽에 고정하기 위해 사용되는 철재 프레임 때문에 외벽과 외벽 마감재 사이에 중공층이 형성된다. 외벽에 화재가 발생하면 가연성외벽의 연소뿐만 아니라 단열재로부터 발생된 화염이 중공층을 통해 수직으로 급격히 확산되어 인명 및 재산피해가 발생할 수 있다. 국내의 경우 국토교통부고시 2015 - 744에 의한 소재단위 성능시험이 수행되고 있으며, 영국에서는 실제 규모의 화재시험으로 외벽의 수직화재확산 시간의 측정이 가능한 BS8414 시험이 시행되고 있다. 본 연구에서는 현행 국내 고시 기준으로 적합한 준불연 소재의 알루미늄복합패널을 대상으로 영국에서 시행되고 있는 실규모 외벽화재시험(BS 8414)을 수행하여 수직화재확산에 대한 거동 관찰과 현재 마감재료의 소재단위 평가의 한계를 확인하고자 하며, 실제 규모의 화재 시험을 통한 외벽화재 화재확산 방지를 위한 시스템 도입 필요성 확인하고자 한다.

Upgrading flexural performance of prefabricated sandwich panels under vertical loading

  • Kabir, M.Z.;Rezaifar, O.;Rahbar, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.277-295
    • /
    • 2007
  • 3-D wall panels are used in construction of exterior and interior bearing and non-load bearing walls and floors of building of all types of construction. Fast construction, thermal insulation, reduced labor expense and weight saving are the most well pronounced advantage of such precast system. When the structural performance is concerned, the main disadvantage of 3D panel, when used as floor slab, is their brittleness in flexure. The current study focuses on upgrading ductility and load carrying capacity of 3D slabs in two different ways; using additional tension reinforcement, and inserting a longitudinal concentrated beam. The research is carried on both experimentally and numerically. The structural performance in terms of load carrying capacity and flexural ductility are discussed in details. The obtained results could give better understanding and design consideration of such prefabricated system.

에코센터의 생태건축기술에 관한 연구 - 건축재료와 태양에너지활용시스템을 중심으로 - (A Study on the Eco-Tecnique of EcoCenter - Focused on the Building Material and Solar System -)

  • 최영호;심우갑
    • KIEAE Journal
    • /
    • 제4권2호
    • /
    • pp.65-72
    • /
    • 2004
  • Ecological architecture enables people to recycle and reuse architectural resources within the category of ecosystem and also to minimize the effect on environment in a whole process, including architectural planning, usage and exhaustion to use sustainable energies. Rammed earth wall construction method utilized in EcoCenter located in Crystalwaters ecological village in Austrailia is a good example, which maximizes its advantages and also covers its limits to use soil and wood as structural resources. In a case of wood, they used non-treated timber to minimize environmental load and utilized used materials in openings. In the roofs, aluminum coated steel which is plated with zinc collects rain effectively even though it is not regenerable. Nontoxic finishes and insulation in floor and ceiling with used papers are able to minimize its environmental load. Solar energy system applied in EcoCenter enables them to market extra energy with electricity companies as well as support needs of its own buildings to utilize photovoltaic panel system with PV panels. Passive solar system is planned effectively in heating and cooling to apply regenerative walls in a use of rammed earth wall construction and natural ventilation systems through openings.

지역 건축물의 에너지 자립을 위한 패시브 외단열 복합패널 개발 연구 (Development of the Passive Outside Insulation Composite Panel for Energy Self-Sufficiency of Building in the Region)

  • 문선욱
    • 한국농촌건축학회논문집
    • /
    • 제20권1호
    • /
    • pp.11-18
    • /
    • 2018
  • The study aims to address the energy crisis and realize self-sufficiency of building as part of local energy independence, breaking away from a single concentrated energy supply system. It is intended to develop modules of the outside insulation composite panels that conform to passive certification criteria and for site-assembly systematization. The method of study first identifies trends and passive house in literature and advanced research. Second, the target performance for development is set, and the structural material is selected and designed to simulate performance. Third, a test specimen of the passive outside insulation curtain wall module designed is manufactured and constructed to test its heat transmission coefficient, condensation performance and airtightness. Finally, analyze performance test results, and explore and propose ways to improve the estimation and improvement of incomplete causes to achieve the goal. The final test results achieved the target performance of condensation and airtightness, and the heat transmission coefficient was $0.16W/(m^2{\cdot}K)$, which is $0.01W/(m^2{\cdot})K$ below the performance target. As for the lack of performance, we saw a need for a complementary design to account for simulation errors. It also provided an opportunity to recognize that insulated walls with performance can impact performance at small break. Thus, to be commercialized into a product with the need for improvement in the design of the joint parts, a management system is needed to increase the precision in the fabrication process.