• Title/Summary/Keyword: Insulation Panel

Search Result 221, Processing Time 0.024 seconds

Sound Insulation Strategy of the Side Panels in a Tilting Train (틸팅열차 측면재의 차음 전략)

  • Kim, Seockhyun;Seo, Taegun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.33-38
    • /
    • 2011
  • In an express tilting train, side wall insulating the noise from the exterior sound source consists of two parts. One is the layered composite panel including aluminum honeycomb, glass wool and nomex honeycomb. The other is the double glazed window. In this study, sound insulation performance of the two parts is investigated by mass law and experiment. Based on ASTM E2249-02, the intensity sound transmission loss (TL) is measured on the specimens of the two parts. Mass law deviation (MLD) is considered in order to compare the sound insulation performance in respect of weight. Contribution of each part to the sound insulation is analyzed and the sound insulation strategy for the interior noise reduction is investigated.

  • PDF

An Experimental Study on the Sound Insulation Performance for Light-weight Concrete Panel (경량콘크리트 패널의 차음성능에 관한 실험적 연구)

  • Chung, J.Y.;Lee, S.H.;Jeong, G.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.457-460
    • /
    • 2004
  • This study examines the sound insulation of the light-weight wall using light-weight concrete and offers the basic datum for enhancing it. The sound insulation of the light-weight wall is determinated by the density, installation method, absorption materials, air layers etc. Among the factors, the solution of outlet that is the major cause of reducing sound insulation should be made. If absorption materials are installed in the cavity walls, it enhances to 15dB in 500Hz.

  • PDF

Characteristics of Local Vibration Modes of the Aluminium Extruded Panels for Rail Road Vehicles (철도 차량용 알미늄 압출재의 국부진동 모드특성)

  • 김석현;장호식;김정헌
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.87-93
    • /
    • 2001
  • Characteristics of the local vibration modes of an aluminium extruded panel are investigated by the finite element analysis and modal testing. Practical methods to increase the damping of the local resonances are proposed. Effects by filling urethan foam in the core cavity and by coating tar on the panel surface are compared by experiments. Modified panel structures to shift the local resonance frequency band are proposed. The results of the study are utilized to predict the severe local resonances in the aluminium extruded panels and prevent their undesirable effect on the sound insulation.

  • PDF

Engineering Properties of Cement Composite Panel for Outer Wall Depending on the Types and Combinations of Insulation Materials (단열소재 종류 및 조합에 따른 외벽단열 패널용 시멘트 복합체의 공학적 특성)

  • Han, Min-Cheol;Cho, Byoung-Young;Lee, Gun-Cheol;Noh, Sang-Kyun;Jeon, Kyu-Nam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.127-135
    • /
    • 2011
  • In this study, the engineering characteristics of outer wall insulation panels according to type of insulation materials, their combination, and the contents of insulation materials were tested. Vermiculate, ceramic bead, perlite and expanded polystyrene were used as insulation materials. Flexural strength and thermal conductivity depending on the insulation materials used were measured. It was found that the flow of fresh mortar significantly decreased with an increase in the contents of insulation materials. In terms of the effect of insulation materials on thermal conductivity, an increase in insulation materials resulted in a decrease of thermal conductivity. In particular, PL and EPS, when used together, have lower thermal conductivity than other materials. Regarding the flexural strength of the hardened mortar, the strength showed a tendency to gradually decrease according to the increase in contents of insulation materials, compared to that of the plain mortar. In terms of the flexural strength depending on various types of insulation materials and its combination, it was found that the flexural strength of cement mortar containing 3% of vermiculate(V)+ceramic bead(CB)+perlite(PL) was the highest among the specimens tested.

Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant (원전 금속단열재의 구조 건전성 강화를 위한 설계 방안)

  • Lee, Sung Myung;Eo, Min Hun;Kim, Seung Hyun;Jang, Kye Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

Flexural Characteristics of Sheets Reinforced ALC Panel (시트 부착 ALC 패널의 휨강도 특성)

  • Lee, Dong-Weon;Kim, Jin-Man;Choi, Hong-Beom;Yu, Jae-Seong;Li, Kun-Mao;Sun, Joung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.28-29
    • /
    • 2015
  • Although there are many applications with gypsum board because of its economical and construction advantages, four-layer construction technique, (hollow area between two-layer panel sets) is the general case to achieve the insulation, and resistance of horizontally applied force. Since this construction method has many problems such as complicate construction steps and increased cost, it is needed that the two-layer panel for improved construction and economical advantage for lightweight pane: thick panel with favorable performances. Therefore, in this research, based on the ALC panel with 10 to 30mm depth, feasibility of the paper reinforced panel as a lightweight wall material. As a result, favorable performance with increased flexural strength were achieved with paper reinforcement.

  • PDF

Evaluation of Smoke Density and Noxious Gas for Phenol Foam Insulation (페놀 폼 단열재의 연기밀도 및 가스유해성 평가)

  • Park, Hyung-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.38-43
    • /
    • 2010
  • The smoke density and noxious gas for phenol foam and polyurethane foam were measured according to test methods in ASTM E 662 and KS F 2271. It was observed that phenol foam had the possibility of application for sandwich panel and board compared with polyurethane foam. In the experimental results, phenol foam showed comparatively excellent property than polyurethane foam in smoke density and noxious gas. The polyurethane foam showed comparatively high smoke density and didn't meet the evaluation standard of noxious gas in KS F 2271. From the experimental results of smoke density and noxious gas, it can be said that phenol foam has both comparatively good safety and high possibility of application than polyurethane foam in the building fire of sandwich panel structure because of lower smoke density and noxious gas.

Bond Performance Test for Optimum Mixing Ratio Calculation of the Floatig Floor Method on Roof-top (옥상 뜬바닥 구조공법의 접착제 최적 배합비 산정을 위한 부착성능 실험)

  • Seo, Yu-Hyun;Park, Jun-Mo;Kim, Ok-Kyue;Jung, Il-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.111-112
    • /
    • 2016
  • Waterproofing methods for applying to roof-top in the building are various, but it is not enough to development, which are simplified and low-cost method for old building. Especially, these buildings have not only a low insulation, but a disadvantage for energy. A floating floor method is necessary for this. This study performs an experimentt about bonding capacity of complex panel for waterproofing and heat insulation. The bond strength experiment is based on KS F 4716, and it is considered by bond mix proportion about panel and slab.

  • PDF

Sound transmission of lightweight block walls and panels-Theory and Experiments

  • S Kandaswamy;A Ramachandraiah
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.235-239
    • /
    • 2004
  • Sound transmission either as airborne or structure borne is a potential problem that occurs in buildings either from sources within or from outside. With the expansion of real estate activities in countries like India, the need to attend sound insulation requirements also assumes greater dimensions. The focus of this research is on studying the sound transmission characteristics of building structures made of hollow blocks, neocrete block, aerocon block and prefabricated panels such as Ferrocement panel. The tests were carried out the blocks with and without plastering and their sound reduction index was measured at one-third octave frequencies. In the case of ferrocement panels, different types of systems were tested in the TL suite. Panels with cavity, with cavity ties, with insulation, with stiffeners and with plasterboard were investigated. Sound reduction index of these panels was measured with additional quantities like longitudinal wavespeed, and loss factors (internal and total loss factor). Tests were also conducted on Cypcrete wall panel and Sandwiched wooden panel in a similar way. Theoretical investigations were carried out using Statistical Energy Analysis (SEA) for the above systems. Sound reduction index was then compared between the predicted and the measured values.

  • PDF