• Title/Summary/Keyword: Insulation Paint

Search Result 13, Processing Time 0.028 seconds

The Estimation of Heating, Cooling Load and Economical Efficiency Analysis of Insulation Paint Coating Windows (단열 도료 코팅 창호의 냉난방부하 특성분석 및 경제성 평가)

  • Jeong, Yeol-Wha;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.95-102
    • /
    • 2011
  • The purpose of study is to estimate heating, cooling load performance and economic efficiency in office building with applied the functional paint. this paint can reduced SHGC(Solar Heat Gain Coefficient) on the glazing surface by coating. In this study, estimated to compared with double glazing, low-e glazing, IP(Insulation Paint) and IPu(Insulation UV-Cut Paint) coating glazing. As a result of this study, 1)heating & cooling load Analysis, SHGC value and U-factor of double glazing is about 0.70 and 3.29($W/m^2K$). low-E glazing is about 0.65 and 2.70($W/m^2K$). Two-side it is about 0.27 and 3.25($W/m^2K$). When compared to double glazing, annual heating & cooling load of low-E glazing, Two-side IPu and IP paint coating glazing is 3,012MWh($124kWh/m^2$), 2,910MWh($120kWh/m^2$), 2,867MWh($118.4kWh/m^2$) and 2,867MWh($118.4kWh/m^2$). It i sreduced to 2.0%, 5.2%, 6.7%, and 6.7% respectively. 2)the estimation of economic efficiency, low-e glazing installed in office building can not recover the investment within a lifetime 40years. but IPu and IP paint, two-side coating in glazing, have a payback period of 13 years respectively.

An Analysis on Thermal Insulation Effect of Farm Structures Coated with Surface Treatment (표면코팅 구조재의 달열효과 분석)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.39-46
    • /
    • 2004
  • This experiment was carried out to study on the effect of surface coating on thermal insulation of farm structures to improve thermal resistance and reflective effect of solar radiation. Nine different types of experimental specimen were compared in the temperature variations of inside and outside; A, B, C, D. E and F types are box container and G, H and I types are drum container. The size of these containers is $1,500{\times}2,000{\times}2,500$ mm and ${\varphi}$ $280{\times}330$ mm, respectively. Specimen of 3-type box(A, B, C) is galvanized steel sheet of thickness 0.45 mm. D, E and F types are sandwich panel of the thickness 50 mm inserted with urethane, glass wool and polystyrene form, respectively. G, H and I types are paint pot using in general. The surface of A. D, E, F and I types didn't any treatment, B, C and G types were treated with thermal insulation coating on the outside surface(B, G) or the inside and outside surface(C). And H type was treated with water paint coating on the only outside surface. In general, the experimental results showed the following tendencies; In case of A, B and C types. it was found that the thermal insulation effect of types coated with thermal insulation coating was improved remarkably than that of no treatment. And the thermal insulation effect between steel sheet and sandwich panel type was nearly similar There was not a significant difference of thermal insulation effect between thermal insulation coating and water paint coating. In time of drum container filled with rough rice, The difference of heat transfer tendency and temperature variation among surface treatments was nearly similar that of box types of galvanized steel sheet. And there was time lag about 6 hours between the temperature of middle part of rice and that of inside or outside surface.

Size Effect of Hollow Silica Nanoparticles as Paint Additives for Thermal Insulation (단열 페인트 첨가제로써 중공형 실리카 나노입자의 크기에 따른 효과)

  • Kim, Jisue;Kim, Younghun
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.18-23
    • /
    • 2022
  • Using air as an insulator due to its low heat transfer coefficient has been studied and has been widely commercialized to save energy in the field of thermal insulation technology. In this study, we analyzed the heat insulating effect of hollow silica nanoparticles mixed in non-uniform size, and the maximum heat insulating efficiency of these particles given the limited number of particles that can be mixed with a medium such as paint. The hollow silica nanoparticles were synthesized via a sol-gel process using a polystyrene template in order to produce an air layer inside of the particles. After synthesis, the particles were analyzed for their insulation effect according to the size of the air layer by adding 5 wt % of the particles to paint and investigating the thermal insulation performance by a heat transfer experiment. When mixing the particles with white paint, the insulation efficiency was 15% or higher. Furthermore, the large particles, which had a large internal air layer, showed a 5% higher insulation performance than the small particles. By observing the difference in the insulation effect according to the internal air layer size of hollow silica nanoparticles, this research suggests that when using hollow particles as a paint additive, the particle size needs to be considered in order to maximize the air layer in the paint.

Properties of Functional Heating Paints according to Additional Ratio of Activated Clay (활성백토 첨가율에 따른 기능성 발열도료의 특성)

  • Lee, Ju-Won;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.35-36
    • /
    • 2023
  • Safety management of steel frame members is a very important part to maintain safety and function. However, precise inspection is not possible for steel frame members due to finishing materials and insulation materials, leading to poor inspection. For steel members, an insulating spray coating method is used for high thermal conductivity. The insulation spray method is not only uneconomical, but also has the disadvantage of spoiling the aesthetics. In addition, VOCs are released from paints used in spraying, so a solution is needed. In this study, heating paint was used to improve the disadvantages of the insulation spray coating method and the high thermal conductivity of steel frame members. In addition to this, in order to reduce VOCs generated from the paint, active clay was added to produce a functional exothermic paint, and then the experiment was conducted. As the amount of activated clay increased, the film thickness increased, and the VOCs emission and thermal conductivity decreased.

  • PDF

Surface Modification of Flake-Shaped Inorganic Mica and Their Cool Paint Performances (판상형 무기소재인 Mica의 표면개질 및 차열페인트의 특성 평가)

  • Park, Jeong Min;Kim, Hee Jung;Yoo, Jung Whan
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.35-38
    • /
    • 2016
  • In this study, the mica used as a thermal-insulation material was modified with a silane coupling agent, octyltriethoxysilane (OTES), to improve its hydrophobicity. The modified mica was characterized using FT-IR spectrometer, water wettability test, and water contact angle measurement. The analysis exhibits that OTES for the modified mica sample was well bonded chemically and drastically enhanced the hydrophobicity. The reflectance observed as 73.9% (mica) and 86.4% (OTES/mica), respectively, for OTES/mica was improved about 12.5% before any modifications. Also the modified mica sample showed $7.2^{\circ}C$ decrease in the thermal-insulation performance of cool paints compared to that of using unmodified mica, indicating that the modification of mica with silane coupling agents could be effective in enhancing the thermal-insulation performance of the cool paint.

Analysis of Internal Temperature Change according to the Application of Thermal Insulation Paint and Heat Pump in Broilers (육계사의 차열 페인트 및 히트펌프 적용에 따른 내부 기온 변화 분석)

  • Jun-Seop Mun;Rack-Woo Kim;Seung-Hun Lee;Sang Min Lee;Sang Kyu Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • Heat stress causes a decrease in immunity and disease occurrence in livestock, increasing mortality and impairing productivity. In particular, chickens are very vulnerable to high temperatures compared to other livestock species because their entire body is covered with feathers and sweat glands are not developed. Currently, air conditioning systems are essential in broiler houses to prevent high-air temperature damage to broilers, but conventional cooling facilities are greatly affected by the external environment, so there are limits to their use. In this study, to propose a cooling method, thermal insulation paint and a heat pump were apply in the broiler houses to evaluate the temperature reduction effect. The heat pump experiment was to analyze the cooling effect according to the change in ventilation rate and propose an appropriate. As a result of the experiment, the heat-insulating paint reduced the temperature of the broiler houses by maximum 1-2℃, and in the broiler houses where the heat pump was operated, the temperature decrease was the largest when the ventilation rate was the lowest. When the air temperature in the house is similar to or lower than the outside air temperature, it is considered to be most effective to use a heat pump while maintaining only the minimum ventilation rate.

Comparison on the fire performance of additional insulation materials for improving the fire retardancy in engine-room of FRP vessel (FRP 선박 기관실 난연성 향상을 위한 추가 방열재의 화재성능비교)

  • Choi, Jung-Min;Um, Han-Chan;Jin, Young-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1150-1155
    • /
    • 2014
  • To prevent the flame spread in FRP vessel in fire, the engine-room of the vessel should be constructed additionally with laminated fire-retardant resin over 3 times or equivalent insulation materials to former according to the relevant standard for FRP vessel structure. It is surveyed that insulation materials called 'Gel coat' are widely used in FRP fishing vessel, however, test method and its criteria for Gel coat are not clearly establish and have not been evaluated yet, while test method and criteria for fire-retardant resin and fire-retardant polyurethane composite are described in test standard for type-approval. In this study, 3 fire-retardant resins, 4 gel coats, 1 flame-retardant paint and 1 polyurethane composite were selected based on the survey and were evaluated according to both IMO FTP Code part 5 and flame-retardant test. When comparing based on CFE values from flame-spread test, average value for 4 gel coats were lower than that of 3 fire-retardant resins. As for flame-retardant test, there were no significant differences between fire-retardant resin and gel coat, based on charred area.

Solar Energy Utilization in a Greenhouse Bulk Curing and Drying System(I) (Greenhouse Bulk건조기에 의한 태양열이용에 관한 연구 (제I보))

  • 진정의;이승철;이상하
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 1980
  • The greenhouse hulk curing and drying system utilizing the direct solar energy was tested to see how much fuel could be saved for curing flue-cured tobacco at the Daegu Experiment Station, Korea Tobacco Research Institute (North latitute: 35$^{\circ}$49'), in 1979. The structure consists of transparent fiberglass exterior, polyurethan boards covered with galvanized iron as the heat absorbers and insulation boards, air duct in which the air is introduced to the furnace room of bulk curing barn, and gravel heat storage system. All exterior surface of heat absorbers, air duct, and gravels were coated with black paint. The air temperature and total radiation were 20.5 to 35.5$^{\circ}C$ and 1004.2 to 1436.2 cal/$\textrm{cm}^2$ during the 3 replicated curing tests, respectively. The greenhouse bulk curing and drying system was able to cut fuel consumption by 25 percent compared with the conventional bulk curing barn. The maximum temperatures for the top absorber and the inlet air of the system were 89$^{\circ}C$ and 64$^{\circ}C$, respectively, and the average temperature of inlet air was higher than that of conventional one by 18$^{\circ}C$.

  • PDF

Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones (드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석)

  • Cho, Young-Il;Yoon, Donghyeon;Shin, Jiyoung;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1985-1999
    • /
    • 2021
  • The purpose of this study is to apply urban heat island reduction techniques(green roof, cool roof, and cool pavements using heat insulation paint or blocks) recommended by the Environmental Protection Agency (EPA) to our study area and determine their actual effects through a comparative analysis between land cover objects. To this end, the area of Mugye-ri, Jangyu-myeon, Gimhae, Gyeongsangnam-do was selected as a study area, and measurements were taken using a drone DJI Matrice 300 RTK, which was equipped with a thermal infrared sensor FLIR Vue Pro R and a visible spectrum sensor H20T 1/2.3" CMOS, 12 MP. A total of nine heat maps, land cover objects (711) as a control group, and heat island reduction technique-applied land covering objects (180) were extracted every 1 hour and 30 minutes from 7:15 am to 7:15 pm on July 27. After calculating the effect values for each of the 180 objects extracted, the effects of each technique were integrated. Through the analysis based on daytime hours, the effect of reducing heat islands was found to be 4.71℃ for cool roof; 3.40℃ for green roof; and 0.43℃ and -0.85℃ for cool pavements using heat insulation paint and blocks, respectively. Comparing the effect by time period, it was found that the heat island reduction effect of the techniques was highest at 13:00, which is near the culmination hour, on the imaging date. Between 13:00 and 14:30, the efficiency of temperature reduction changed, with -8.19℃ for cool roof, -5.56℃ for green roof, and -1.78℃ and -1.57℃ for cool pavements using heat insulation paint and blocks, respectively. This study was a case study that verified the effects of urban heat island reduction techniques through the use of high-resolution images taken with drones. In the future, it is considered that it will be possible to present case studies that directly utilize micro-satellites with high-precision spatial resolution.

Research on Separation Behavior Joint of Develop and Application in Sheet-Membrane Composite Waterproofing (시트-도막을 이용한 분리거동형 복합방수공법 개발 및 적용에 관한 연구)

  • Heo, Neung-Hoe;Kim, Dong-Bum;Oh, Je-Gon;Go, Gun-Woong;Go, Jang-Ryeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.165-166
    • /
    • 2014
  • The Composite waterproofing began to rise gradually 2000s in domestic. However, the sheet-membrane composite waterproofing method also acts as an abutment vulnerability that was a problem in a single method, and had the problem of damage to the formation of leakage paths. The existing non-overlap method, through vigorous research abutting sheet shall or could be developed to improve the seal performance of this method with the I-type joint coating material. Nevertheless, it has an integral top coat paint membrane and a sheet abutment limitation, damage to the upper membrane is damaged junction coating membranes has been generated. In this study, a method that has a layer of insulation on the joint bond breaker concept development, and to determine the physical properties with insulated joints to determine the breaking off of the upper joint is damaged coating membrane and tensile performance.

  • PDF