• Title/Summary/Keyword: Insulation Efficiency

Search Result 321, Processing Time 0.025 seconds

Sound Insulation Properties of Polymer Soundproof Panels (폴리머 계열 방음패널의 차음특성 비교 분석)

  • Lee, Woo-Mi;Lee, Ju Haeng;Son, Jin-Hee;Kim, Il-Ho;Park, Jae-Roh;Kim, Kwang Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.592-597
    • /
    • 2013
  • It is widely known that the sound insulation of soundproof panel is highly correlated to two factors, surface density of material and the frequency of noise. Accordingly, the character of traffic noise released in actual situation is important requisite for determining thickness to determine surface density and material of soundproof panel. This present study selected polymer panel with advantage of light weight and workability and evaluates according to frequency of traffic noise. Polypropylene (PP) and high-density polyethylene (HDPE) were selected as subjects based on economic valuation and efficiency. The sound transmission loss of selected polymer panels were compared with the currently used panels such as polycarbonate (PC) and polymethyl methacrylate (PMMA) depending on thickness and materials. As a result, PC showed the highest sound transmission loss followed by PMMA, HDPE, and PP in range of mass law. In terms of acoustic performance on thickness, the transmission loss increased with thickness of soundproof panel meanwhile coincidence dip was observed in lower frequency where had reduced transmission loss. Therefore, it is suggested that after determining target frequency, the kind of materials and thickness of soundproof panel need to be designed so that traffic noise can be more efficiently reduced.

Development of Semi-basement Type Greenhouse Model for Energy Saving

  • Kim, Seoung Hee;Joen, Jong Gil;Kwon, Jin Kyeong;Kim, Hyung Kweon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.328-336
    • /
    • 2016
  • Purpose: The heat culture areas of greenhouses have been continuously increasing. In the face of international oil price fluctuations, development of energy saving technologies is becoming essential. To save energy, auxiliary heat source and thermal insulation technologies are being developed, but they lack cost-efficiency. The present study was conducted to save energy by developing a conceptually new semi-basement type greenhouse. Methods: A semi-basement type greenhouse, was designed and constructed in the form of a three quarter greenhouse as a basic structure, which is an advantageous structure to inflow sunlight. To evaluate the performance of the developed greenhouse, a similar structured general greenhouse was installed as a control plot, and heating tests were conducted under the same crop growth conditions. Results: Although shadows appeared during the winter in the semi-basement type greenhouse due to the underground drop, the results of crop growth tests indicated that there were no differences in crop growth and development between the semi-basement type greenhouse and the control greenhouse, indicating that the shadows did not affect the crop up to the height of the crop growing point. The amount of fuel used for heating from January to March was almost the same between the two greenhouses for tests. The heating load coefficients of the experimental greenhouses were calculated as $3.1kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the semi-basement type greenhouse and $2.9kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the control greenhouse. Since the value is lower than the double layer PE (polyethylene) film greenhouse value of $3.5kcal/m^2{\cdot}^{\circ}C{\cdot}h$ from a previous study, Tthe semi-basement type greenhouse seemed to have energy saving effects. Conclusions: The semi-basement type greenhouse could be operated with the same fuel consumption as general greenhouses, even though its underground portion resulted in a larger volume, indicating positive effects on energy saving and space utilization. It was identified that the heat losses could be reduced by installing a thermal curtain of multi-layered materials for heat insulation inside the greenhouse for the cultivation of horticultural products by installing thermal curtain of multi-layered materials for heat insulation inside the greenhouse, it was identified that the heat losses could be reduced.

The development of fuel processor for compact fuel cell cogeneration system (소형 열병합 연료전지 연계형 연료처리시스템 개발)

  • Cha, Jung-Eun;Jun, Hee-Kwon;Park, Jung-Joo;Ko, Youn-Taek;Hwang, Jung-Tae;Chang, Won-Chol;Kim, Jin-Young;Kim, Tae-Won;Kim, In-Ki;Jeong, Young-Sik;Kal, Han-Joo;Yung, Wang-Rai;Jung, Woon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.323-327
    • /
    • 2009
  • To extract hydrogen for stack, fuels such as LPG and LNG were reformed in the fuel processor, which is comprised of desulfurizer, reformer, shift converter, CO remover and steam generator. All elements of fuel processor are integrated in a single package. Highly active catalysts (desulfurizing adsorbent, reforming catalyst, CO shift catalyst, CO removal catalyst) and the various burners were developed and evaluated in this study. The performance of the developed catalysts and the commercial ones was similar. 1 kW, 5 kW class fuel processor systems using the developed catalyst and burner showed efficiency of 75 %(LHV, for LNG). The start-up time of the 1 kW class fuel processor was less than 50 minutes and its volume including insulation was about 30 l. The start-up time of 3 kW and 5 kW class fuel processors with the volume of 90 l and 150 l, respectively, was about 60 minutes. In the case of LPG fuel, efficiency, volume and start-up time of 1kW class fuel processor showed 73 %(LHV), < 60 l and < 60 min, respectively. Advanced fuel processor showed more highly efficiency and shorter start-up time due to the improvement of heat exchanger and operating method. 1 kW and 3 kW class fuel processors have been evaluated for reliability and durability including with on/off test of developed catalysts and burner.

  • PDF

A study on the Site Survey and Detection Efficiency for Kepco Lightning Detection and Information Network (낙뢰측정 네트워크(KLDNet)를 위한 감지기 사이트서베이와 낙뢰 감지율 검토)

  • Woo, J.W.;Kwak, J.S.;Moon, J.D.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.532-537
    • /
    • 2006
  • Lightning induced faults accounts for more than 66% at the transmission lines of KEPCO. The lightning causes damages to power system equipments including transmission line, the blackout of electricity and the electro-magnetic interference. Because of this reason, we need the real time lightning information for the optimal operation of power system. And, it is required to obtain and accumulate the lightning current parameters for the insulation design. In 2005, KEPRI constructed a lightning detection network, the KLDNet (i.e. Kepco Lightning Detection & Information System) and launched a lightning information service for KEPCO customers. It is intended to provide data service on the operation of transmission lines and collect lightning-related data, which is the most important factor regulating power system design and operation. The new system will replace LPATS, the old detection system, which has been operating since 1995 and is rapidly failing in terms of both detection performance and location accuracy. The purpose of this paper is to explain the work performed and the results of that work in performing a site survey of several locations. The purpose of the site survey is to find locations acceptable for the installation of a lightning location receiver in support of a Lightning detection system(LDS). A restriction was placed on the surveyed locations, as they must belong to the Korea Electric Power Company. This requirement was made to facilitate the communication needs of the LDS network. Total of 15 sites were evaluated as possible LDS sensor sites. Some of the sites were rejected for physical reasons and therefore no electrical testing was performed. Of the 15 sites, total of 10 sites were considered acceptable and 5 sites were rejected for various reason. In this paper, we would like to explain the site survey and detection efficiency for LDS.

Energy Efficiency Improvement and Field Scale Study of Crematory using Computation Fluid Dynamics (전산유동해석을 통한 화장로의 에너지 효율개선 및 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2019
  • The cremation rate of Korea in 2016 was 82.7% which is four times greater than 20.5% in 1994. As increasing the cremation rate gradually, it cause a shortage of cremation facilities resulting in building more cremation facilities to meet the increasing inquiries on cremation or a large amount of fuels for the longer operation of the crematory. In this study, the crematory system optimizing its thermal efficiency characteristics and also responding to increasing inquiries on cremation was proposed in order for solving such problems, In particular, the heat flow characteristics including a heat transfer coefficient by performing a simulation using computational fluid dynamics (CFD) was investigated. The CFD model was validated with on-site experiments for a cremation facility. As a result of the simulation, the fuel consumption decreased nearly 25% and residence time increased in the main combustor. Also, the improved crematory was constructed with an expanded combustor, heat exchanger, second combustion air system, refractory and insulation material. From on-site experiments, the energy consumption was saved to approximately 54.4%, while the burning time reduced nearly 20 minutes.

Investigation on the Physical Properties of the Lightweight Mortar Made with Hydrogen Peroxide (과산화수소를 혼입한 경량기포 모르타르의 물리적 특성에 관한 연구)

  • Lee, Soo-Yong;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.117-123
    • /
    • 2018
  • The increase in energy efficiency has became a significantly important issue for building construction and maintenance. The energy efficiency is known to be achieved by using a material with lower thermal conductivity, and the best method is to increase the internal porosity of the material. Typical ways to increase internal porosity within cementitious composite are to use foaming agents or to use reactive powder such as aluminum. However, in this work, hydrogen peroxide was chosen as an alternative material to make lightweight cement mortar. The volume expansion of fresh cement mortar and unit weight, compressive strength and thermal conductivity of 28 day old cement mortar were measured. According to the experimental results, the incorporation of hydrogen peroxide increased internal porosity, and thereby reducing the compressive strength and thermal conductivities of cement mortar. It was found that hydrogen peroxide can be successfully used to produce lightweight mortar for thermal insulation purposes of buildings.

The Design Criteria for the Model Development of the New-hanok Type Public buildings - Focused on Expert Opinion Surveys -

  • Park, Joon-Young;Bae, Kang-Won;Kim, So Young;Jung, Kyung-Yoon
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.37-45
    • /
    • 2016
  • Purpose: According to the characteristic of hanok public building, Planning criterion of structure, technology, efficiency, design is needed which can includes various type of new-hanok type public buildings. In this paper, we collect expert opinions to be used as a basis for developing models of New-hanok type Public Buildings. Method: This study was conducted in Research Study and expert surveys. The Part of reviewing Study looked at conception of new-hanok type public buildings model development and overview planning criterion set briefly. Expert surveys were targeted to professors and architects who are related in new-hanok type public buildings model development research. Result: In this study, we suggest improvement direction about planning criterion of new-hanok type public buildings model development based on opinions collected by expert surveys. In conclusion, first, In concept and legal status, it is necessary to adjust clearly than the term and legal status of new-hanok type. Second, various applicability is needed by using new materials and new construction method at the part of planning elements. Third, 'composed structure-convergence type' and 'composed structure-juxtaposed type' should be clearly classified or combined at the part of Setting of type. Forth, improvement on heat insulation, soundproof, waterproof efficiency is demanded to roof, wall, window systems. Fifth, arranging revitalization plan is important.

A Study of Parametric Effects on the Thermal Performance of Flat-Plate Liquid-Heating Solar Collectors (평판형 액체식 집열기 의 각종 변수 가 집열기 의 열성능 에 미치는 영향)

  • 전문헌;윤석범;추교명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.145-153
    • /
    • 1984
  • In the present work, a computer simulation is performed employing Hottel-Whillier-Bliss model for thermal performance of solar collectors. The major collector parameters examined in the computer simulation are: number of transparent glass covers(N), thermal emissivity of the absorbing plate surface (.epsilon.$_{P}$), absorptivity of absorber plate (.alpha.$_{p}$), flow rate per unit area of collector (G), $L_{b}$ / $k_{b}$ of insulation material, tilt angle of collector (S), and solar insolation(I). By varying numerical values of the major collector parameters around their typical values, the corresponding variations in thermal efficiency curves are examined. In addition, an experimental investigation has been carried out with a slightly modified KAIST collector test loop under a real sun condition in order to compare with the simulation results, examine the applicability of the mathematical model of the collector thermal performance, and study the effect of variation of flow rate (G) on thermal efficiency and the range of optimum flow rate.e.

Experimental Analysis on the Performance of a Solar Powered Water Pump (태양열 물펌프의 실험적 성능분석)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;La W. J.;Lee Y. K.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.521-530
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which electrical power is not available. The average solar radiation power is $3.488\;kWh/(m^2{\cdot}day)$ in Korea. In this study, the experimental system of the water pump driven by the radiation energy were designed, assembled, tested and analyzed fur realizing the solar powered water pump. Energy conversion ken radiation energy to mechanical energy by using n-pentane as operating material was done and the water pumping cycles were able to be continued. The quantity of the water pumped per cycle ranged from 2 L to 10 L depending on the level of the valve open area far the vapour supply. The average quantity was about 4,366 cc. The thermal efficiency was about $0.018\%$. The pressure level of the n-pentane vapour in flash tank was about $110\~150\;kPa$ and that in the water tank was $93\~130\;kPa$. The pressure in the condenser during cycles was maintained as about 70 kPa. The condensation of the n-pentane vapour in the water tank was increased with the cycles even though the internal and external insulation were done. Air tank performance was better with increasing of the water piston displacement and the water could be pumped with the water piston displacement becoming higher than 6,500 cc.

Experimental Study on the Performance Improvement of a Simultaneous Heating and Cooling Heat Pump in the Heating-main Operating Mode (난방주체 운전모드에서의 동시냉난방 열펌프 성능향상에 관한 실험적 연구)

  • Kang, Hoon;Jung, Hyen-Joon;Joo, Young-Ju;Kim, Yong-Chan;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2008
  • The cooling load in winter is significant in buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. Hence, the development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this study, the operating characteristics and performance of a simultaneous heating and cooling heat pump in the heating-main operating mode were investigated experimentally. The system adopted a variable speed compressor with four indoor units and one outdoor unit with R-410A. In the heating-main mode, the cooling capacity was lower than the design cooling capacity due to the reduction of the flow rate in the indoor unit for the cooling, with the increase of the heating capacity. To solve these problems, the performance characteristics of the simultaneous heating and cooling heat pump in the heating-main mode were investigated by varying the flow rate to the indoor unit for the cooling and the compressor rotating speed. In addition, the adequate control methods were suggested to improve the system efficiency.