• Title/Summary/Keyword: Instrument Error

Search Result 277, Processing Time 0.026 seconds

Spatio-temporal soil moisture estimation using water cloud model and Sentinel-1 synthetic aperture radar images (Sentinel-1 SAR 위성영상과 Water Cloud Model을 활용한 시공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Kim, Sehoon;Jang, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.28-28
    • /
    • 2022
  • 본 연구는 용담댐유역을 포함한 금강 유역 상류 지역을 대상으로 Sentinel-1 SAR (Synthetic Aperture Radar) 위성영상을 기반으로 한 토양수분 산정을 목적으로 하였다. Sentinel-1 영상은 2019년에 대해 12일 간격으로 수집하였고, 영상의 전처리는 SNAP (SentiNel Application Platform)을 활용하여 기하 보정, 방사 보정 및 Speckle 보정을 수행하여 VH (Vertical transmit-Horizontal receive) 및 VV (Vertical transmit-Vertical receive) 편파 후방산란계수로 변환하였다. 토양수분 산정에는 Water Cloud Model (WCM)이 활용되었으며, 모형의 식생 서술자(Vegetation descriptor)는 RVI (Radar Vegetation Index)와 NDVI (Normalized Difference Vegetation Index)를 활용하였다. RVI는 Sentinel-1 영상의 VH 및 VV 편파자료를 이용해 산정하였으며, NDVI는 동기간에 대해 10일 간격으로 수집된 Sentinel-2 MSI (MultiSpectral Instrument) 위성영상을 활용하여 산정하였다. WCM의 검정 및 보정은 한국수자원공사에서 제공하는 10 cm 깊이의 TDR (Time Domain Reflectometry) 센서에서 실측된 6개 지점의 토양수분 자료를 수집하여 수행하였으며, 매개변수의 최적화는 비선형 최소제곱(Non-linear least square) 및 PSO (Particle Swarm Optimization) 알고리즘을 활용하였다. WCM을 통해 산정된 토양수분은 피어슨 상관계수(Pearson's correlation coefficient)와 평균제곱근오차(Root mean square error)를 활용하여 검증을 수행할 예정이다.

  • PDF

The Bullet Launcher with A Pneumatic System to Detect Objects by Unique Markers

  • Jasmine Aulia;Zahrah Radila;Zaenal Afif Azhary;Aulia M. T. Nasution;Detak Yan Pratama;Katherin Indriawati;Iyon Titok Sugiarto;Wildan Panji Tresna
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.252-260
    • /
    • 2023
  • A bullet launcher can be developed as a smart instrument, especially for use in the military section, that can track, identify, detect, mark, lock, and shoot a target by implementing an image-processing system. In this research, the application of object recognition system, laser encoding as a unique marker, 2-dimensional movement, and pneumatic as a shooter has been studied intensively. The results showed that object recognition system could detect various colors, patterns, sizes, and laser blinking. Measuring the average error value of the object distance by using the camera is ±4, ±5, and ±6% for circle, square and triangle form respectively. Meanwhile, the average accuracy of shots on objects is 95.24% and 85.71% in indoor and outdoor conditions respectively. Here, the average prototype response time is 1.11 s. Moreover, the highest accuracy rate of shooting results at 50 cm was obtained 98.32%.

Machine Learning Based Model Development and Optimization for Predicting Radiation (방사선량률 예측을 위한 기계학습 기반 모델 개발 및 최적화 연구)

  • SiHyun Lee;HongYeon Lee;JungMin Yeom
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.551-557
    • /
    • 2023
  • In recent years, radiation has become a socially important issue, increasing the need for accurate prediction of radiation levels. In this study, machine learning-based models such as Multiple Linear Regression (MLR), Random Forest (RF), XGBoost, and LightGBM, which predict the dose rate by time(nSv h-1) by selecting only important variables, were used, and the correlation between temperature, humidity, cumulative precipitation, wind direction, wind speed, local air pressure, sea pressure, solar radiation, and radiation dose rate (nSv h-1) was analyzed by collecting weather data and radiation dose rate for about 6 months in Jangseong, Jeollanam-do. As a result of the evaluation based on the RMSE (Root Mean Squared Error) and R-Squared (R-Squared coefficient of determination) scores, the RMSE of the XGBoost model was 22.92 and the R-Squared was 0.73, showing the best performance among the models used. As a result of optimizing hyperparameters of all models using the GridSearch method and comparing them by adding variables inside the measuring instrument, it was confirmed that the performance improved to 2.39 for RMSE and 0.99 for R-Squared in both XGBoost and LightGBM.

Sensitivity Experiment of Surface Reflectance to Error-inducing Variables Based on the GEMS Satellite Observations (GEMS 위성관측에 기반한 지면반사도 산출 시에 오차 유발 변수에 대한 민감도 실험)

  • Shin, Hee-Woo;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • The information of surface reflectance ($R_{sfc}$) is important for the heat balance and the environmental/climate monitoring. The $R_{sfc}$ sensitivity to error-induced variables for the Geostationary Environment Monitoring Spectrometer (GEMS) retrieval from geostationary-orbit satellite observations at 300-500 nm was investigated, utilizing polar-orbit satellite data of the MODerate resolution Imaging Spectroradiometer (MODIS) and Ozone Mapping Instrument (OMI), and the radiative transfer model (RTM) experiment. The variables in this study can be cloud, Rayleigh-scattering, aerosol, ozone and surface type. The cloud detection in high-resolution MODIS pixels ($1km{\times}1km$) was compared with that in GEMS-scale pixels ($8km{\times}7km$). The GEMS detection was consistent (~79%) with the MODIS result. However, the detection probability in partially-cloudy (${\leq}40%$) GEMS pixels decreased due to other effects (i.e., aerosol and surface type). The Rayleigh-scattering effect in RGB images was noticeable over ocean, based on the RTM calculation. The reflectance at top of atmosphere ($R_{toa}$) increased with aerosol amounts in case of $R_{sfc}$<0.2, but decreased in $R_{sfc}{\geq}0.2$. The $R_{sfc}$ errors due to the aerosol increased with wavelength in the UV, but were constant or slightly decreased in the visible. The ozone absorption was most sensitive at 328 nm in the UV region (328-354 nm). The $R_{sfc}$ error was +0.1 because of negative total ozone anomaly (-100 DU) under the condition of $R_{sfc}=0.15$. This study can be useful to estimate $R_{sfc}$ uncertainties in the GEMS retrieval.

A Study On RTLS(Real Time Location System) Based on RSS(Received Signal Strength) and RSS Characteristics Analysis with the External Factors (외적요인에 따른 RSS 특성 분석과 이를 이용한 실시간 위치 추적 시스템 구현에 관한 연구)

  • Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.76-85
    • /
    • 2011
  • In this paper, we analysed RSS characteristics by external factors and presented an efficient algorithm for real-time location tracking and its hardware system. The proposed algorithm enhanced the ranging accuracy using Kalman Filter based on the RSS DB. The location tracking system that consists of the tag, AP(Access Point), a data collector(Data Receiver) with IEEE 802.15.4(ZigBee) network environment, and location tracking application that reveal locations of each tag is implemented for the test environment. The location tracking system presented in this paper is implemented with MSP430 microprocessor manufactured by TI(Texas Instrument), CC2420 RF chipset and the location tracking application. With the results of the experiment, the proposed algorithm and the system can achieve the efficiency and the accuracy of location tracking with the average error of 19.12cm, and its standard deviation of 5.31cm in outdoor circumstance. Also, the experimental result shows that exact tracking of position in indoor circumstance cannot achieve because of vulnerable RSS with external circumstance.

DETERMINATION OF MOISTURE AND NITROGEN ON UNDRIED FORAGES BY NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS)

  • Cozzolino, D.;Labandera, M.;Inia La Estanzuela
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1620-1620
    • /
    • 2001
  • Forages, both grazed and conserved, provide the basis of ruminant production systems throughout the world. More than 90 per cent of the feed energy consumed by herbivorous animals world - wide were provided by forages. With such world - wide dependence on forages, the economic and nutritional necessity of been able to characterize them in a meaningful way is vital. The characterization of forages for productive animals is becoming important for several reasons. Relative to conventional laboratory procedures, Near Infrared Reflectance Spectroscopy (NIRS) offers advantages of simplicity, speed, reduced chemical waste, and more cost-effective prediction of product functionality. NIR spectroscopy represents a radical departure from conventional analytical methods, in that entire sample of forage is characterized in terms of its absorption properties in the near infrared region, rather than separate subsamples being treated with various chemicals to isolate specific components. This forces the analyst to abandon his/her traditional narrow focus on the sample (one analyte at a time) and to take a broader view of the relationship between components within the sample and between the sample and the population from which it comes. forage is usually analysed by NIRS in dry and ground presentation. Initial success of NIRS analysis of coarse forages suggest a need to better understand the potential for analysis of minimally processed samples. Preparation costs and possible compositional alterations could be reduced by samples presented to the instrument in undried and unground conditions. NIRS has gained widespread acceptance for the analysis of forage quality constituents on dry material, however little attention has been given to the use of NIRS for chemical determinations on undried and unground forages. Relatively few works reported the use of NIRS to determine quality parameters on undried materials, most of them on both grass and corn silage. Only two works have been found on the determination of quality parameters on fresh forages. The objectives of this paper were (1) to evaluate the use of NIRS for determination of nitrogen and moisture on undried and unground forage samples and (2) to explore two mathematical treatments and two NIR regions to predict chemical parameters on fresh forage. Four hundred forage samples (n: 400) were analysed in a NIRS 6500 instrument (NIR Systems, PA, USA) in reflectance mode. Two mathematical treatments were applied: 1,4,4,1 and 2,5,5,2. Predictive equations were developed using modified partial least squares (MPLS) with internal cross - validation. Coefficient of determination in calibration (${R^2}_{CAL}$) and standard error in cross-validation (SECV) for moisture were 0.92 (12.4) and 0.92 (12.4) for 1,4,4,1 and 2,5,5,2 respectively, on g $kg^{-1}$ dry weight. For crude protein NIRS calibration statistics yield a (${R^2}_{CAL}$) and (SECV) of 0.85 (19.8) and 0.85 (19.6) for 1,4,4,1 and 2,5,5,2 respectively, on a dry weight. It was concluded that NIRS is a suitable method to predict moisture and nitrogen on fresh forage without samples preparation.

  • PDF

COMPARISON OF LINEAR AND NON-LINEAR NIR CALIBRATION METHODS USING LARGE FORAGE DATABASES

  • Berzaghi, Paolo;Flinn, Peter C.;Dardenne, Pierre;Lagerholm, Martin;Shenk, John S.;Westerhaus, Mark O.;Cowe, Ian A.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1141-1141
    • /
    • 2001
  • The aim of the study was to evaluate the performance of 3 calibration methods, modified partial least squares (MPLS), local PLS (LOCAL) and artificial neural network (ANN) on the prediction of chemical composition of forages, using a large NIR database. The study used forage samples (n=25,977) from Australia, Europe (Belgium, Germany, Italy and Sweden) and North America (Canada and U.S.A) with information relative to moisture, crude protein and neutral detergent fibre content. The spectra of the samples were collected with 10 different Foss NIR Systems instruments, which were either standardized or not standardized to one master instrument. The spectra were trimmed to a wavelength range between 1100 and 2498 nm. Two data sets, one standardized (IVAL) and the other not standardized (SVAL) were used as independent validation sets, but 10% of both sets were omitted and kept for later expansion of the calibration database. The remaining samples were combined into one database (n=21,696), which was split into 75% calibration (CALBASE) and 25% validation (VALBASE). The chemical components in the 3 validation data sets were predicted with each model derived from CALBASE using the calibration database before and after it was expanded with 10% of the samples from IVAL and SVAL data sets. Calibration performance was evaluated using standard error of prediction corrected for bias (SEP(C)), bias, slope and R2. None of the models appeared to be consistently better across all validation sets. VALBASE was predicted well by all models, with smaller SEP(C) and bias values than for IVAL and SVAL. This was not surprising as VALBASE was selected from the calibration database and it had a sample population similar to CALBASE, whereas IVAL and SVAL were completely independent validation sets. In most cases, Local and ANN models, but not modified PLS, showed considerable improvement in the prediction of IVAL and SVAL after the calibration database had been expanded with the 10% samples of IVAL and SVAL reserved for calibration expansion. The effects of sample processing, instrument standardization and differences in reference procedure were partially confounded in the validation sets, so it was not possible to determine which factors were most important. Further work on the development of large databases must address the problems of standardization of instruments, harmonization and standardization of laboratory procedures and even more importantly, the definition of the database population.

  • PDF

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region (강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석)

  • Park, Hye-In;Zo, Il-Sung;Kim, Bu-Yo;Jee, Joon-Bum;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.

Surface Reflectance Retrieval from Satellite Observation (OMI) over East Asia Using Minimum Reflectance Method (위성관측 오존계에서 최소 반사도법을 이용하여 동아시아 지역의 지면반사도 산출)

  • Shin, Hee-Woo;Yoo, Jung-Moon;Lee, Kwon-Ho
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.212-226
    • /
    • 2019
  • This study derived spectral Lambertian Equivalent Reflectance (LER) over East Asia from the observations of Ozone Monitoring Instrument (OMI) onboard polar-orbit satellite Aura. The climatological (October 2004-September 2007) LER values were compared with the surface reflectance products of OMI or MODerate resolution Imaging Spectroradiometer (MODIS) in terms of the atmosphere-environment variables as follows: wavelength (UV, visible), surface properties (land, ocean), and cloud filtering. Four kinds of LER outputs in the UV and visible region (328-500 nm) were retrieved based on the averages of lowest (1, 5, and 10%) surface reflectance values as well as the minimum reflectance. The average of the lowest 10% among them was in best agreement with the OMI product: correlation coefficient (0.88), RMSE (1.0%) and mean bias (-0.3%). The 10% average and OMI LER values over ocean were 2% larger in UV than in visible, while the values over land were 1% smaller. The LER variability on the wavelength and surface property was highest (~3%) in the condition of both land and visible, particularly in the ice-cap and desert regions. The minimum reflectance values over the oceanic and inland sample areas overestimated the MODIS product by 1.4%. This high-resolution MODIS observations were effective in removing cloud contamination. The relative errors of the 10% average to MODIS were smaller (-0.6%) over ocean but larger (1.5%) over land than those of the OMI product to MODIS. The reduced relative error in the OMI product over land may result from additional cloud filtering using the Landsat data. This study will be useful when retrieveing the surface reflectance from geostationary-orbit environmental satellite (e.g., Geostationary Environment Monitoring Spectrometer; GEMS).

Characteristics of Measurement Errors due to Reflective Sheet Targets - Surveying for Sejong VLBI IVP Estimation (반사 타겟의 관측 오차 특성 분석 - 세종 VLBI IVP 결합 측량)

  • Hong, Chang-Ki;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.325-332
    • /
    • 2022
  • Determination of VLBI IVP (Very Long Baseline Interferometry Invariant Point) position with high accuracy is required to compute local tie vectors between the space geodetic techniques. In general, reflective targets are attached on VLBI antenna and slant distances, horizontal and vertical angles are measured from the pillars. Then, adjustment computation is performed by using the mathematical model which connects measurements and unknown parameters. This indicates that the accuracy of the estimated solutions is affected by the accuracy of the measurements. One of issues in local tie surveying, however, is that the reflective targets are not in favorable condition, that is, the reflective sheet target cannot be perfectly aligned to the instrument perpendicularly. Deviation from the line of sight of an instrument may cause different type of measurement errors. This inherent limitation may lead to incorrect stochastic modeling for the measurements in adjustment computation procedures. In this study, error characteristics by measurement types and pillars are analyzed, respectively. The analysis on the studentized residuals is performed after adjustment computation. The normality of the residuals is tested and then equal variance test between the measurement types are performed. The results show that there are differences in variance according to the measurement types. Differences in variance between distances and angle measurements are observed when F-test is performed for the measurements from each pillar. Therefore, more detailed stochastic modeling is required for optimal solutions, especially in local tie survey.