• Title/Summary/Keyword: Instantaneous intensity

Search Result 91, Processing Time 0.027 seconds

Measurement of Air Motion in a Diesel Engine Combustion Chamber using Hot Wire Anemometer (열선유속계에 의한 디이젤기관 연소실내의 공기유동 측정)

  • U, Dae-Seong;Go, Dae-Gwon;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.86-94
    • /
    • 1987
  • In order to examine the flow motion in a combustion chamber of a motored diesel engine, the variation of instantaneous are velocity at a fixed point in combustion chamber was measured by the constant temperature hot wire anemometer, varing engine speed, shroud shape and shroud position. The results are summerized as follows: 1. The variation of air velocity in a combustion chamber is closely related with the valve timing and piston velocity. 2. The air velocity in the cylinder at suction stroke is being increased and maximized at 60$^{\circ}$ ABDC in compression stroke and then decreased at the e.v.o. in expansion stroke. 3. The mean velocity using shroud valve was less than no shroud valve. However the turbulent intensity using shroud valve was larger than no shroud valve. 4. The turbulent intensity with 90$^{\circ}$shroud valve was larger than that of 120$^{\circ}$shroud valve, and 90$^{\circ}$shroud valve at 180$^{\circ}$shroud position had the largest turbulent intensity.

  • PDF

Measurement of Air Motion in a Diesel Engine Combustion Chamber using Hot Wire Anemometer (열선유속계에 의한 디이젤기관 연소실내의 공기유동 측정)

  • Dae-Sung Woo;Dae-Kwon Ko;Soo-Kil Ahn
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.40-40
    • /
    • 1987
  • In order to examine the flow motion in a combustion chamber of a motored diesel engine, the variation of instantaneous are velocity at a fixed point in combustion chamber was measured by the constant temperature hot wire anemometer, varing engine speed, shroud shape and shroud position. The results are summerized as follows: 1. The variation of air velocity in a combustion chamber is closely related with the valve timing and piston velocity. 2. The air velocity in the cylinder at suction stroke is being increased and maximized at 60° ABDC in compression stroke and then decreased at the e.v.o. in expansion stroke. 3. The mean velocity using shroud valve was less than no shroud valve. However the turbulent intensity using shroud valve was larger than no shroud valve. 4. The turbulent intensity with 90°shroud valve was larger than that of 120°shroud valve, and 90°shroud valve at 180°shroud position had the largest turbulent intensity.

Fisheries resources management of crucian carp based on assessment of fish stock and potential yield in the mid-upper system of Seomjin River

  • Ryu, Hui Seong;Jang, Sung Hyun;Lee, Jung Ho;Lee, Jung Joon
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.209-216
    • /
    • 2014
  • This study was undertaken to suggest an effective fisheries resources management system by using stock assessment and potential yield analyses of crucian carp population in the mid-upper system of the Seomjin River. Fieldwork was conducted seasonally from 2008 to 2009 in the mid-upper system of the Seomjin River. The stock assessment was carried out by the swept area method and the potential yield was estimated by improved fisheries resource potential estimation system based on the Allowable Biological Catch. Also, the yield-per-recruit analysis was used to review the efficient management implication of the resource, Carassius auratus. As a result, the age at first capture ($t_c$) was estimated as 1.468 year, converted body length (BL) was 10.8 cm. Meaning the current fishing intensities, the instantaneous coefficient of fishing mortality (F) was $0.067year^{-1}$, and the yield-per-recruit analysis showed that the current yield per recruit was estimated to be 15.999 g with F and $t_c$. The instantaneous rate of fishing mortality that provides for Allowable Biological Catch ($F_{ABC}$) based on the current $t_c$ and F was estimated as $0.618year^{-1}$. Therefore, the optimum fishing intensities could be achieved at the higher fishing intensity for Carassius auratus. The calculated annual stock of C. auratus was estimated as 7,608 kg, and the potential yield was estimated as 343 kg with $t_c$ and F at the fixed current level. Using yield-per-recruit analysis, if F and $t_c$ were set at $0.618year^{-1}$ and 2 year, the yield per recruit and total allowable catch would be predicted to increase to 62 g and 2,531 kg by about 3.9 times and 7.3 times, respectively.

Population Ecological Characteristics of the Soft-shelled Clam, Mya japonica in the Intertidal Zone of South Sea in Korea (한국 남해안 조간대에 서식하는 우럭, Mya japonica의 자원생태학적 특성)

  • 이선길;장창익
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.234-243
    • /
    • 2000
  • This paper is to study population ecological characteristics, including growth parameters, survival rate, instantaneous coefficients of natural and fishing mortalities, and age at first capture of the soft-shelled clam, Mya japonioa in the intertidal zone of South Sea in Korea. For describing growth of the clam a von Bertalanffy growth model was adopted, The von Bertalanffy growth curve had an additive error structure and the growth parameters estimated from a non-linear regression were SH/sub ∞/=79.83mm, K=0.26, and t/sub 0/= -0.01. Survival rate (S) of the soft-shelled clam was 0.26 (SD=0.02). The instantaneous coefficients of natural mortality (M) was estimated to be 0.78/year and fishing mortality (F) 0.57/year for the soft-shelled clam. The age at first capture (t/sub c/) was estimated as 2.69 year. The mean densities of the soft-shelled clam by bottom type were 3.40 inds./m²(SE=0.18) in the sand, 63.4 inds./m²(SE= 0.53) in the muddy sand, and 0 inds./m2 (SE=0) in the gravelly sand. The mean densities of the soft-shelled clam by 3 different areas were 4.88 inds./m²(SE=0.09), 2.61 inds./m²(SE=0.13), 7.20 inds./m²(SE=0.18), respectively and the biomass of the clam were estimated as 131mt, 121mt, 665mt, respectively. An yield-per-recruit analysis showed that the current yield-per-recruit of about 8.30g with F=0.57/year and the age at first capture (t/sub c/) 2.69 year, was lower than the maximum possible yield-per-recruit of 9.60g. Fixing to at the current level and increased fishing intensity (F) could produce an increase in the predicted yield-per-recruit from 8.30g to about 9.40. However, estimated yield-per-recruit increased to 1.30g by decreasing to from the current age (2.69 year) to age two with F fixed at the current level. Yield-per-recruit was estimated under harvest strategies based on F/sub max/ and F/sub 0.1/.

  • PDF

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (II)- Turbulence Characteristics - (PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (II)- 난류유동 특성 -)

  • Lee, Man-Bok;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1417-1426
    • /
    • 2001
  • Turbulent flow characteristics in the near wake of a square cylinder have been studied experimentally by using a Digital PIV method. Experiments are performed at the Reynolds numbers of 1600 and 3900 based on the free-stream velocity and the square height. The ensemble averaged turbulence statistics are acquired from 2030 realizations of instantaneous fluctuating velocity field after the conventional Reynolds decomposition. The differences in turbulent intensity and Reynolds shear stress profiles fur both oases indicate that the effect of Reynolds number seems to be descernible mainly due to the occurrence of transition in the separated shear layer. Because of the periodic nature of vortex shedding process, transverse velocity fluctuations contribute dominantly , to turbulent kinetic energy distribution. A comparison with previous LDV data obtained at much higher Reynolds number shows a fairly good agreement each other. It turns out that the effect of Reynolds number diminishes as increasing Reynolds number, which is a well-known feature of a sharp-edged bluff body wake. The streamwise variation of turbulence intensities are compared with those from a circular cylinder along the centerline at the same Reynolds number. The overall magnitudes and the decay rates of turbulence intensities are quite similar, but some differences are noticeble especially in the transverse intensity variation.

Three Component Velocity Field Measurements of Turbulent Wake behind a Marine Propeller Using a Stereoscopic PIV Technique (Stereoscopic PIV 기법을 이용한 선박용 프로펠러 후류의 3차원 속도장 측정)

  • Lee, Sang-Joon;Paik, Nu-Geun;Yoon, Jong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1716-1723
    • /
    • 2003
  • A stereoscopic PIV(Particle Image Velocimetry) technique was employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was determined using two CCD cameras with the angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases and ensemble averaged to investigate the spatial evolution of the propeller wake in the near-wake region from the trailing edge to one propeller diameter(D) downstream. The phase-averaged velocity fields show the potential wake and the viscous wake developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component and strain rate have large values at the locations of tip and trailing vortices. As the flow goes downstream, the turbulence intensity, the strength of tip vortices and the magnitude of out-of-plane velocity component at trailing vortices are decreased due to viscous dissipation, turbulence diffusion and blade-to-blade interaction.

A Study on the Mixing Characteristics in Complex Turbulent Flow by a Laser Induced Fluorescence Method (레이저 형광여기법(LIF)를 이용한 복잡 난류유동장의 혼합특성에 관한 연구)

  • Kim, Kyung-Chun;Jeong, Eun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.542-547
    • /
    • 2001
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera can be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration in each region after the dye infusion reflects the large scale mixing while the followed slow decay reveals the small scale mixing. The temporal change of concentration probability functions conjectures the two sequential processes in the batch type mixing. An inactive column of water existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

  • PDF

A Study on the Mixing Characteristics in a Rushton Turbine Reactor by a Laser Induced Fluorescence Method (레이저 형광여기법(LIF)를 이용한 러쉬톤 터빈 교반기의 혼합특성에 관한 연구)

  • Jeong, Eun-Ho;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1145-1152
    • /
    • 2002
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields was obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera could be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter. height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration after the dye infusion reflects the large scale turbulent mixing while the fellowed slow decay reveals the small scale molecular mixing. The temporal change of concentration variance field conjectures the two sequential processes for the batch type mixing. An inactive column of water is existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

Severe Downslope Windstorms of Gangneung in the Springtime (봄철 강릉지역에서 발생하는 강풍에 대한 연구)

  • Jang, Wook;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.207-224
    • /
    • 2008
  • Severe downslope windstorms observed at Gangneung, Korea in the springtime during the last 30 years are studied to understand their generation mechanisms. 92 severe wind cases are selected for which the maximum instantaneous wind speeds exceed two standard deviation of total mean plus ($18.7ms^{-1}$). They are categorized into the three mechanisms (hydraulic jump, partial reflection, and critical-level reflection) proposed in previous studies based on the flow condition, which is calculated using the wind and temperature profile observed at one upstream rawinsonde station, Osan. Among the three, partial reflection is found to be the most frequent mechanism for the last 30 years (1976 - 2005). To understand the role of inversion in generating severe downslope windstorms, horizontal velocity perturbation was calculated analytically for the atmosphere with an inversion layer. It turned out that the intensity of downslope wind was increased by inversion layer of specific heights, which are well matched with the observations. For better understanding the generation mechanisms, two-dimensional numerical simulations are conducted for the 92 severe wind cases using the ARPS model. In most simulations, surface wind speed exceeds the value of the severe-wind criterion, and each simulated case can be explained by its own generation mechanism. However, in most simulations, the simulated surface wind speed is larger than the observed, due to ignoring the flow-splitting effect in the two-dimensional framework.