• Title/Summary/Keyword: Instantaneous Reactive Power Control

Search Result 80, Processing Time 0.034 seconds

Single-Phase Hybrid Active Power Filter Using Rotating Reference Frame (회전좌표계를 이용한 단상 하이브리드형 능동 전력필터)

  • Kim Jin-Sun;Kim Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.377-386
    • /
    • 2005
  • This paper presents the control algorithm of single-phase hybrid active power filter for the compensation of harmonic current components in nonlinear R-L load with passive active Power filters. To construct two phase system, an imaginary second phase was made. In this proposed method, the new signal which is the delayed through the filtering by the phase-delay property of low-pass filter is used as the secondary phase. Because two-phases have the different phase, the instantaneous calculation of harmonic current is possible. In this paper, a reference voltage is created by multiplying the coefficient k by the compensation current using the rotating reference frame synchronized with the source-frequency, not applying to instantaneous reactive power theory which has been used with the existing fixed reference frames In order to verify the validities of the proposed control methods, experiments are carried out with the prototypes of single-phase hybrid active power filter.

A Study on System Configuration of Grid-connected CTTS System with Soft Switching (소프트 절환이 가능한 계통 연계형 CTTS 시스템 구성에 관한 연구)

  • Lee, Hyoung-Mook;Yang, Ji-Hoon;Lee, Jung-Hwan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.361-368
    • /
    • 2018
  • This paper proposes a grid - connected CTTS system that can be soft switched to meet the government's effective resource allocation policy for emergency generator. In order to eliminate the system instability caused by the large inrush current generation in the system switching, a new virtual rotation coordinate method for the dissimilar power source is proposed. The proposed virtual rotation coordinate method improves the voltage detection accuracy of the voltage difference of the dissimilar power supply, and it is proved that the synchronous switching characteristic is excellent. In addition, zero current and system stabilization can be achieved by realizing zero current when blocking CTTS with instantaneous reactive power control. Simulation was carried out to verify the validity of the proposed method, and the 500[kVA] system was fabricated and verified to demonstrate the superiority of the proposed method.

Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance (계통 불평형시 과도 응답 특성이 개선된 고압 이중여자 유도형 풍력발전 시스템의 제어 전략)

  • Han, Dae-Su;Suh, Yong-Sug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.91-103
    • /
    • 2015
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage wind power system under unbalanced grid conditions. Negative sequence control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors: fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple indicates the most cost-effective performance in terms of torque pulsation. The least active power pulsation is produced by a control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. A combination of these two control algorithms depending on operating requirements and depth of grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions, leading to a high-performance DFIG wind turbine system with unbalanced grid adaptive features.

Minimization of Active Power and Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power Systems under Unbalanced Grid Conditions

  • Park, Yonggyun;Han, Daesu;Suh, Yongsug;Choi, Wooyoung
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1032-1041
    • /
    • 2013
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power systems under unbalanced grid conditions. Three different control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, instantaneous active power pulsation, harmonic distortions and torque pulsation. The control algorithm having a zero amplitude of torque ripple shows the most cost-effective performance concerning torque pulsation. The least active power pulsation is produced by the control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive powers. A combination of these two control algorithms depending on the operating requirements and the depth of the grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions leading to high performance DFIG wind turbine systems.

A Study on Active Power Filter for Compensation of Power Factor and Harmonic Currents (역률개선 및 고조파 보상을 위한 능동전력필터에 관한 연구)

  • Kim, Y.H.;Kim, J.S.;Kwon, G.H.;Chung, Y.H.;Choi, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1074-1076
    • /
    • 1992
  • By using nonlinear loads in power line, reactive power and harmonics are occured. In this thesis, on the basis of the instantaneous reactive power theory, the calculation method of compensation current commands and the current control characteristics of active power filter using voltage source PWM converter are presented. The calculation of compensation current is performed by DSP within 50 usec. And the Pl control of current is performed by analog devices. The compensations of harmonic current in rectifier loads and unbalance currents are proved by experiments.

  • PDF

The Mapping Theory between Current/Voltage and Instantaneous Powers in Three-phase Systems (3상 계통에서 전류/전압과 순시전력간의 맵핑이론)

  • 김효성;최재호
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.228-232
    • /
    • 1997
  • The relation between instantaneous active/reactive powers and currents is defined by voltage mapping matrix in three-phase four-wire systems. Control strategies for an active filter without energy storage components are proposed on the basis of mapping matrices. It can compensate for the zero-sequence current, irrespectively of whether or not a zero-sequence voltage exists in a three-phase four-wire system.

  • PDF

A Parallel Inverter System with an Instantaneous Power Balance Control (순시전력 균형제어를 이용한 병렬 인버터 시스템)

  • Sun, Young-Sik;Lee, Chang-Seok;Kim, Si-Kyung;Kim, Chang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.19-28
    • /
    • 2000
  • The parallel inverter is widely utilized because of its fault-tolerance capability, high-current output at constant voltages and system modularity. The conventional paralled inverter usually employes an active and reactive power control or a frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes novel control scheme for equalization of output power between the parallel connected inverters. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed constrol scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Sensorless speed Control of Interior Permanent Magnet Synchronous Motor based on Instantaneous Reactive Power in the Field-Weakening Region (약계자 영역에서의 순시 무효전력을 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어)

  • Kang, Hyoung-Seok;Kim, Won-Seok;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.923-924
    • /
    • 2006
  • For the interior permanent magnet synchronous motor(IPMSM) drive to operate above the base speed in the constant horsepower region, field weakening control is applied. However, the field weakening control was not almost applied to sensorless control of the interior permanent magnet synchronous motor. In this parer, field weakening control is applied to the sensorless control of IPMSM based on an instantaneos reactive power. The effectiveness of the Proposed system is verified by the experimental results.

  • PDF

Sensorless speed Control of a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power in the Field-Weakening Region (약계자 제어 영역에서의 순시무효전력을 이용한 영구자석 동기전동기의 센서리스 속도제어)

  • Lee Jeong-Hum;Kim Young-Seok;Choi Yang-Kwang;Kim Dai-Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.926-928
    • /
    • 2004
  • For the permanent magnet synchronous motor(PMSM) drive to operate above the base speed in the constant horsepower region, field weakening control is applied. But field weakening control was not almost applied to sensorless control of the permanent magnet synchronous motor. In this paper, field weakening control is applied to the sensorless control of PMSM based on an instantaneos reactive power. And the effectiveness of the proposed system is verified by the experimental results.

  • PDF

An Enhanced Instantaneous Circulating Current Control for Reactive Power and Harmonic Load Sharing in Islanded Microgrids

  • Lorzadeh, Iman;Abyaneh, Hossein Askarian;Savaghebi, Mehdi;Lorzadeh, Omid;Bakhshai, Alireza;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1658-1671
    • /
    • 2017
  • To address the inaccurate load demand sharing problems among parallel inverter-interfaced voltage-controlled distributed generation (DG) units in islanded microgrids (MGs) with different DG power ratings and mismatched feeder impedances, an enhanced voltage control scheme based on the active compensation of circulating voltage drops is proposed in this paper. Using the proposed strategy, reactive power and harmonic currents are shared accurately and proportionally without knowledge of the feeder impedances. Since the proposed local controller consists of two well-separated fundamental and harmonic voltage control branches, the reactive power and harmonic currents can be independently shared without having a remarkable effect on the amplitude or quality of the DGs voltage, even if nonlinear (harmonic) loads are directly connected at the output terminals of the units. In addition, accurate load sharing can also be attained when the plug-and-play performance of DGs and various loading conditions are applied to MGs. The effects of communication failures and latency on the performance of the proposed strategy are also explored. The design process of the proposed control system is presented in detail and comprehensive simulation studies on a three-phase MG are provided to validate the effectiveness of the proposed control method.