• 제목/요약/키워드: Instantaneous Frequency

검색결과 337건 처리시간 0.028초

유압관로의 동특성을 이용한 비정상 유량계측 (Unsteady Flow Rate Measurement by Using Hydraulic Pipeline Dynamics)

  • 김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.411-416
    • /
    • 1999
  • The measurement of unsteady flow rate is of vital importance to clarify and improve the dynamic characteristics in pipeline, hydraulic components and system. There is also demand for a real time flow sensor of ability to measure unsteady flow rate with high accuracy and fast response to realize feedback control of flow rate in fluid power systems. In this paper, we propose an approach for estimating unsteady flow rate through a pipeline and components under high pressure condition. In the method, unsteady flow rate is estimated by using hydraulic pipeline dynamics and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-checking functions of the method, the validity is investigated by comparison with the measured and estimated pressure waveforms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate waveforms and theroetical those under unsteady laminar flow conditions. the method proposed here is useful in estimating unsteady flow rate through an arbitray cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

  • PDF

벽와도 측정을 위하여 개발된 V형 열선 프로브의 성능특성 (Performance Characteristics of a V-type Probe Developed for Wall Vorticity Measurement)

  • 김성욱;류상진;유정열
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.514-522
    • /
    • 2001
  • In order to investigate the relation between wall vorticity and streamwise velocity fluctuations in a turbulent boundary layer, a wall vorticity probe has been developed, which consists of two hot-wires on the wall aligned in V configuration. Although the measured intensity of spanwise wall vorticity fluctuations is somewhat lower than previous results, the intensity of streamwise wall vorticity fluctuations is in good agreement with them. It has been shown that the measured intensity of spanwise wall vorticity fluctuations is affected by transverse length of the wall vorticity probe. Instantaneous streamwise and spanwise wall vorticity fluctuations are compared with the results of DNS. Probability density function of spanwise wall vorticity fluctuations shows good agreement with previous results and is different from that of streamwise wall vorticity fluctuations. Energy spectrum of streamwisw wall vorticity fluctuations is lower than that of spanwise wall vorticity fluctuations in low frequency region.

주기적으로 회전하는 원봉 주위의 후류에 관한 수치적 연구 (Numerical simulation of the flow behind a circular cylinder with a rotary oscillation)

  • 백승진;성형진
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.267-279
    • /
    • 1998
  • A numerical study was made of flow behind a circular cylinder in a uniform flow, where the cylinder was rotationally oscillated in time. The temporal behavior of vortex formation was scrutinized over broad ranges of the two externally specified parameters, i.e., the dimensionless rotary oscillating frequency (.110.leq. $S_{f}$.leq..220) and the maximum angular amplitude of rotation (.theta.$_{max}$=15 deg., 30 deg. and 60 deg.). The Reynolds number (Re= $U_{{\inf}D}$.nu.) was fixed at Re=110. A fractional-step method was utilized to solve the Navier-Stokes equations with a generalized coordinate system. The main emphasis was placed on the initial vortex formations by varying $S_{f}$ and .theta.$_{max}$. Instantaneous streamlines and pressure distributions were displayed to show the vortex formation patterns. The vortex formation modes and relevant phase changes were characterized by measuring the lift coefficient ( $C_{L}$) and the time of negative maximum $C_{L}$( $t_{-C}$$_{Lmax}$) with variable forcing conditions.s.tions.s.s.s.

An Improved Central 60° Synchronous Modulation for High Transient Performance with PMSM Stator Flux Control Used in Urban Rail Transit Systems

  • Fang, Xiaochun;Lin, Fei;Yang, Zhongping
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.542-552
    • /
    • 2016
  • Central 60° synchronous modulation is an easy pulse-width modulation (PWM) method to implement for the traction inverters of urban rail trains at a very low switching frequency. Unfortunately, its switching patterns are determined by a Fourier analysis of assumed steady-state voltages. As a result, its transient responses are not very good with over-currents and high instantaneous torque pulses. In the proposed solution, the switching patterns of the conventional central 60° modulation are modified according to the dynamic error between the target and actual stator flux. Then, the specific trajectory of the stator flux and current vector can be guaranteed, which leads to better system transients. In addition, stator flux control is introduced to get smooth mode switching between the central 60° modulation and the other PWMs in this paper. A detailed flow chart of the control signal transmission is given. The target flux is obtained by an integral of the target voltage. The actual PMSM flux is estimated by a minimum order flux state observer based on the extended flux model. Based on a two-level inverter model, improved rules in the α-β stationary coordinate system and equations of the switching patterns amendment are proposed. The proposed method is verified by simulation and experimental results.

경험 모드 분리법을 이용한 감쇠 진동 신호의 분석 (Analysis of Damped Vibration Signal Using Empirical Mode Decomposition Method)

  • 이인재;이종민;황요하;허건수
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.192-198
    • /
    • 2005
  • Empirical mode decomposition(EMD) method has been recently proposed to analyze non-linear and non-stationary data. This method allows the decomposition of one-dimensional signals into intrinsic mode functions(IMFs) and is used to calculate a meaningful multi-component instantaneous frequency. In this paper, it is assumed that each mode of damped vibration signal could be well separated in the form of IMF by EMD. In this case, we can have a new powerful method to calculate natural frequencies and dampings from damped vibration signal which usually has multiple modes. This proposed method has been verified by both simulation and experiment. The results by EMD method whichhas used only output vibration data are almost identical to the results by FRF method which has used both input and output data, thereby proving usefulness and accuracy of the proposed method.

주파수 비선택성 채널에서 MPSK와 MQAM을 이용한 적응적 시스템 모델의 성능 해석 (Performance Analysis of Adaptive System Model using MPSK and MQAM for Frequency Nonselective Channel)

  • Jae-Kyoung Moon
    • 한국전자파학회논문지
    • /
    • 제8권4호
    • /
    • pp.332-341
    • /
    • 1997
  • 본 논문은 slowly 레일리 페이딩에서 트렐리스 코디드(Trellis-Coded) MQAM (M ultiple Quadrature Amp plitude Modulation)을 적용한 적응화 모텔을 제안하였다. 이 제안한 적응화 모텔은 변형된 1/2 콘볼루션 부호 화기를 사용하여 부호율을 가변하였고 이에 대응하는 비터비 복호기를 사용하였다 채널상태에 따라서 부호율과 변조 레벨을 가변하여 데이타 전송율을 향상시켰다. 컴퓨터 모의 실험은 제안한 ATCMQAM(Adaptive Trellis-Coded MQAM)과 기존의 ATCMPSK(Adaptive Trellis-Coded MPSK) 모텔을 수행하였다. 이상적으로 인터리빙을 한 경우와 실제 레일리 페이딩 채널에서 인터리빙 크기를 가변한 경우에 대해서 모의실험하여서 각각의 성능과 데이타 출력율을 도시하였다. 결론적으로 MQAM을 사용한 경우가 MPSK와 비슷한 성능을 유지하면서 데이타 출력율을 SNR이 증가할수록 0.5-1 비 트 이상 향상시킬 수 있었다.

  • PDF

Wind-induced dynamic response and its load estimation for structural frames of circular flat roofs with long spans

  • Uematsu, Yasushi;Yamada, Motohiko
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.49-60
    • /
    • 2002
  • This paper describes a simple method for evaluating the design wind loads for the structural frames of circular flat roofs with long spans. The dynamic response of several roof models were numerically analyzed in the time domain as well as in the frequency domain by using wind pressure data obtained from a wind tunnel experiment. The instantaneous displacement and bending moment of the roof were computed, and the maximum load effects were evaluated. The results indicate that the wind-induced oscillation of the roof is generally dominated by the first mode and the gust effect factor approach can be applied to the evaluation of the maximum load effects. That is, the design wind load can be represented by the time-averaged wind pressure multiplied by the gust effect factor for the first mode. Based on the experimental results for the first modal force, an empirical formula for the gust effect factor is provided as a function of the geometric and structural parameters of the roof and the turbulence intensity of the approach flow. The equivalent design pressure coefficients, which reproduce the maximum load effects, are also discussed. A simplified model of the pressure coefficient distribution is presented.

HAZARD ANALYSIS OF TYPHOON-RELATED EXTERNAL EVENTS USING EXTREME VALUE THEORY

  • KIM, YOCHAN;JANG, SEUNG-CHEOL;LIM, TAE-JIN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.59-65
    • /
    • 2015
  • Background: After the Fukushima accident, the importance of hazard analysis for extreme external events was raised. Methods: To analyze typhoon-induced hazards, which are one of the significant disasters of East Asian countries, a statistical analysis using the extreme value theory, which is a method for estimating the annual exceedance frequency of a rare event, was conducted for an estimation of the occurrence intervals or hazard levels. For the four meteorological variables, maximum wind speed, instantaneous wind speed, hourly precipitation, and daily precipitation, the parameters of the predictive extreme value theory models were estimated. Results: The 100-year return levels for each variable were predicted using the developed models and compared with previously reported values. It was also found that there exist significant long-term climate changes of wind speed and precipitation. Conclusion: A fragility analysis should be conducted to ensure the safety levels of a nuclear power plant for high levels of wind speed and precipitation, which exceed the results of a previous analysis.

원형실린더를 지나는 균일전단 유동에 관한 수치연구 (Numerical Study on Uniform-Shear Flow Over a Circular Cylinder)

  • 최원호;강상모
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.139-150
    • /
    • 2005
  • The present study has numerically investigated two-dimensional laminar flow over a circular cylinder with a uniform planar shear, where the free-stream velocity varies linearly across the cylinder. Numerical simulations using the immersed boundary method are performed for the ranges of $50{\le}Re{\le}160,\;K{\le}0.2$, and B=0.1 and 0.05 where Re, K and B are the Reynolds number, the non-dimensionalized velocity gradient and the blockage ratio, respectively. Results show that the flow depends significantly on B as well as Re and K. It is found, especially, that the blockage effect accounts for some causes of apparent discrepancies among previous studies on the flow. With increasing K, the vortex shedding frequency and the mean drag stay nearly constant or slightly decrease whereas the mean lift, acting from the higher-velocity side to the lower, increases linearly. Flow statistics as well as instantaneous flow fields are presented to identify the characteristics of the flow and then to understand the underlying mechanism.

순시전력이론을 통한 계통연계 PWM 인버터 시스템의 능동댐핑 기법 (An active damping method of a grid-connected PWM Inverter using an instantaneous power theory)

  • 정해광;이교범;강신일;이현영;권오정;송승호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.85-87
    • /
    • 2008
  • The demand of a three phase PWM inverter for the purpose of power control or grid-connecting is increasing. This inverter is connected to a grid through an L-filter or LCL-filter to reduce the harmonics caused by switching. An LCL-filter can reduce the harmonic of a low switching frequency and generate a satisfactory level of grid side current with a relatively low-inductance than an L-filter. But the additional poles caused by the LC part affects a stability problem due to induced resonance of the system. This paper presents a compensation method using a power theory to improve performance, the designed LCL-filter system and to reduce the stability problems caused by resonance. The effectiveness of the proposed algorithm is verified by simulations.

  • PDF