• Title/Summary/Keyword: Instantaneous Channel

Search Result 164, Processing Time 0.03 seconds

Analysis on the Impact of Multiple-Antenna Transmit Schemes on Multiuser Diversity

  • Lee, Myoung-Won;Mun, Cheol;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.222-228
    • /
    • 2006
  • In this paper, the performance of a multiuser diversity system combined with a multi-element transmit antenna system is analyzed under the assumption of independent Rayleigh fading. A measure of system .level performance is an average channel capacity as a function of the number of users and antennas. Average channel capacity is obtained from the instantaneous signal-to-noise ratio(SNR) distribution combined by both transmit diversity(TD) at each link and multiuser diversity at system level. Numerical results show that closed-loop antenna techniques provide an additional gain with multiuser diversity system due to array gain, even though space diversity gain reduces multiuser diversity gain. On the other hand, the space-time block coding(STBC) that provides full order space diversity gain only has a destructive influence on multiuser diversity.

Large Eddy Simulation of Flow and Heat Transfer in a Channel Roughened by Square or Semicircle Ribs (사각 또는 반원 형상의 요철이 설치된 채널 내부의 유동 및 열전달의 큰에디모사)

  • Ahn, Joon;Choi, Hae-Cheon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1436-1441
    • /
    • 2004
  • The internal cooling passage of a gas turbine blade can be modeled as a ribbed channel. Most studies have considered square ribs. However, the ribs can be rounded due to improper manufacturing or wear during the operation. Hence, we have studied two different rib geometries in this study, i.e. square and semicircle ribs. We have performed large eddy simulations (LES) and experiments to validate the results from the simulations. LES predicts the detailed flow and thermal features, which have not been captured by simulations using turbulence models. By investigating the instantaneous flow and thermal fields, we propose the mechanisms for the local heat transfer distribution between ribs. For both the geometries, heat transfer is enhanced by the entrainment of the cold fluid by the vortical motions and impingement of the entrained cold fluid on the ribs.

  • PDF

INVESTIGATION OF DRAG REDUCTION MECHANISM BY MICROBUBBLE INJECTION WITHIN A CHANNEL BOUNDARY LAYER USING PARTICLE TRACKING VELOCIMETRY

  • Hassan Yassin A.;Gutierrez-Torres C.C.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.763-778
    • /
    • 2006
  • Injection of microbubbles within the turbulent boundary layer has been investigated for several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not yet fully understood. Experiments in a channel flow for single phase (water) and two phase (water and microbubbles) flows with various void fraction values are studied for a Reynolds number of 5128 based on the half height of the channel and bulk velocity. The state-of-the art Particle Tracking Velocimetry (PTV) measurement technique is used to measure the instantaneous full-field velocity components. Comparisons between turbulent statistical quantities with various values of local void fraction are presented to elucidate the influence of the microbubbles presence within the boundary layer. A decrease in the Reynolds stress distribution and turbulence production is obtained with the increase of microbubble concentration. The results obtained indicate a decorrelation of the streamwise and normal fluctuating velocities when microbubbles are injected within the boundary layer.

Flow Past Airfoil Moving Reciprocally in a Channel by Vortex Method

  • Ro Ki-Deok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1248-1255
    • /
    • 2006
  • The velocity and pressure fields of a ship's propulsion mechanism of the Weis-Fogh type, in which a airfoil moves reciprocally in a channel, are studied in this paper using the advanced vortex method. The airfoil and the channel are approximated by a finite number of source and vortex panels, and the free vortices are introduced from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart law and the pressure field is calculated from integrating the equation given by the instantaneous velocity and vorticity fields. Two-dimensional unsteady viscose flows of this propulsion mechanism are numerically clarified, and the calculated results agree well with the experimental ones.

On Adaptive LDPC Coded MIMO-OFDM with MQAM on Fading Channels (페이딩 채널에서 적응 LDPC 부호화 MIMO-OFDM의 성능 분석)

  • Kim, Jin-Woo;Joh, Kyung-Hyun;Ra, Keuk-Hwan
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.80-86
    • /
    • 2006
  • The wireless communication based on LDPC and adaptive spatial-subcarrier coded modulation using MQAM for orthogonal frequency division multiplexing (OFDM) wireless transmission by using instantaneous channel state information and employing multiple antennas at both the transmitter and the receiver. Adaptive coded modulation is a promising idea for bandwidth-efficient transmission on time-varying, narrowband wireless channels. On power limited Additive White Gaussian Noise (AWGN) channels, low density parity check (LDPC) codes are a class of error control codes which have demonstrated impressive error correcting qualities, under some conditions performing even better than turbo codes. The paper demonstrates OFDM with LDPC and adaptive modulation applied to Multiple-Input Multiple-Output (MIMO) system. An optimization algorithm to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge is used. The experimental results are shown the potential of our proposed system.

COHERENT STRUCTURES IN DEVELOPING FLOW OVER A WAVY WALL (파형벽면이 있는 채널 유동의 응집 구조 연구)

  • Chang, Kyoung-Sik
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • The present study focuses on the case of developing flow with in a channel containing a long array of sinusoidal waves (2a/${\lambda}$=0.1, ${\lambda}$=h, ${\lambda}$ is the wavelength, 2a is the wave height, h is the mean channel depth) at the bottom wall. The Reynolds number defined with channel height, h and the mean velocity, U, is Re=6,700. The channel is sufficiently long such that transition is completed and the flow is fully developed over the downstream half of the channel. For the case of an incoming steady flow with no resolved turbulence, the instantaneous flow fields in the transition region are characterized by the formation of arrays of highly-organized large-scale hairpin vortices whose dimensions scale with that of the roughness elements. The paper explains the mechanism for the formation of these arrays of hairpin vortices and shows these eddies play the primary role in the formation of the large-scale streaks of high and low velocity over the wavy wall region. The presence of resolved turbulence in the incoming flow, reduces the streamwise distance needed for the streaks to develop over the wavy region, but does not affect qualitatively the transition process. In the fully-developed region, isolated and trains of large-scale hairpins play an important role in the dynamics of the streaks over the wavy wall.

Opportunistic Beamforming with Link Anaptation Robust to Imperfect Channel Estimation (기회적 빔포밍 시스템에서 채널 추정에 강인한 링크 적응 기법)

  • Kim, Yo-Han;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.617-626
    • /
    • 2008
  • Opportunistic Beamforming (OBF) offers a way to provide the multiuser diversity even in slow fading channel by using randomly generated beam weights, leading to the substantially reduced feedback in the form of the instantaneous SNR from users. In spite of the advantage of the reduced feedback, the imperfect channel estimation might influence the quality of the estimated SNR and channel scheduler so bad that the selected AMC level would be higher than the achievable rate of the actual channel, resulting the corruption of transmitted packet. In this paper, we propose a conservative link adaptation, where the estimated SNR is scaled down by a conservative factor which minimizes the variance of the maximum difference between the actual channel SNR and the resultant SNR. To support the proposed scheme, we analyze the statistics of the difference of the channel SNR and the estimated SNR. Simulation results show that the introduction of conservative factor achieves more than two-fold performance improvement in the presence of channel estimation error and the fairness of PF scheduler is maintained when the least squared channel estimator is applied.

Relay Selection Schemes in Network-Coding based Two-Way Relay Communication to Improve Performance (성능향상을 위한 네트워크 부호화 기반 양방향 중계기 통신에서의 릴레이 선택 기법)

  • Lee, Jin-Hee;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.7-13
    • /
    • 2009
  • In This Paper, we propose relay schemes for network-coding based two-way relay communication in multi relay channel. Two-way relay channel communication is a bi-directional communication that two users exchange their data with the help of a relay. Network-coding based Two-way relay communication can achieve more throughput compared to conventional two-way relay communication. In this paper, we propose relay selection schemes to provide maximum performance considering instantaneous signal-to-noise in multi-relay channel. Simulation results show that the proposed relay selection schemes can provide diversity order according to the number of relays.

  • PDF

Flow Characteristics of Drag Reducing Channel Flows Induced by Surfactant (계면활성제를 첨가한 마찰감소 채널흐름의 유동특성)

  • Park, S.R.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.519-526
    • /
    • 1996
  • A 2D-LDV system was employed to investigate the flow field characteristics in fully developed drag reducing turbulent channel flows. The additive used in this study was Habon-G which showed splendid drag reduction effect and minimum mechanical degradation trend in the closed flow circulation loop. In order to have better understanding of the drag reduction mechanism, the instantaneous velocities were carefully measured under various experimental conditions and the flow characteristics including time-averaged velocity, turbulent intensity and Reynolds shear stresses were carefully assessed. The time-averaged velocity profiles of surfactant flows showed more parabolic shape(typically shown in a laminar flow) together with significant suppression of turbulent production, yielding the shear induced micelle structure orienting in the flow direction due to its isotropic characteristics. Especially it was observed that the maximum intensity for drag reducing flows was shifted away from the wall and that the streamwise and normal turbulent intensities were strongly altered. This phenomenon strongly suggests that the viscous sublayer becomes thicker with addition of surfactant. Turbulent momentum transport was drastically suppressed across the whole drag reducing channel flow.

  • PDF

The Effect of Time Delay on Adaptive QAM Schemes in Mobile Multimedia Communications (이동 멀티미디어 통신에서 적응 QAM 변조의 시간지연에 대한 영향)

  • Chung, Yeon-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.236-239
    • /
    • 2001
  • This paper provides a comprehensive study of the effect of time delay on adaptive transmission methods. By adaptive we mean that the transmission of data is made adaptive according to channel conditions. That is, the modulation level at the transmitter is carefully controlled for maximizing bandwidth efficiency, on the basis of the observation of instantaneous channel characteristics. By making use of the simulator developed for the present work, a large number of channel propagation environments including the models proposed in 3GPP were submitted to the simulator and the performance with respect to both time delay and SNR is observed. The results show that the performance is very sensitive to channel delay and in some cases the performance shows irreducible BER (IBER). A large amount of delay together with a high fading rate greatly affects the performance of adaptive transmission systems.

  • PDF