• Title/Summary/Keyword: Installation Costs

Search Result 376, Processing Time 0.025 seconds

Proposal of New Correction Factors for New and Renewable Energy Sources in Public Building (공공건축물에 적용되는 신·재생에너지원의 새로운 보정계수 제안)

  • Kim, Yun-Ho;Park, Yun-Ha;Won, An-Na;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.13-24
    • /
    • 2016
  • The government introduced a mandatory installation system of new & renewable energy for public building to meet the target of greenhouse gas reduction and also suggest a correction factor for new renewable energy to expand the installation of various new & renewable energy systems. The introduction of correction factors, however, was followed by the reduction of installation size of new & renewable energy sources. Assuming that it was caused by a correction factor for each new renewable energy source calculated by the initial costs, this study proposed a new correction factor approach based on payback periods to reflect the technology element in the calculation process of correction factors additionally. The application results of new correction factors show that it was possible to do complex calculations including the economic and technological aspects to select a new & renewable energy system and that the installation size was also enlarged.

Automatic Arrangement Algorithm for Tower Cranes Used in High-rise Apartment Buildings

  • Lim, Chae-Yeon;Kim, Sun-Kuk;Seo, Deok-Seok;Son, Ki-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.358-368
    • /
    • 2012
  • On most construction sites, the arrangement of tower cranes is decided by site engineers based on their own experience, which can cause cost overruns and delays in the lifting work. Although many researchers have conducted studies on tower crane arrangement using computer modeling and knowledge-based expert systems as well as mathematical models, no research has aimed to develop an algorithm to identify an optimum solution among several alternatives for installation areas of tower cranes satisfying the conditions of lifting work. The objective of this study is to develop an automatic arrangement algorithm for tower cranes used in high-rise apartment construction. First, as a new concept, a possible installation area of tower cranes was suggested. Second, after proposing several alternatives based on the installation points suggested in this study, an algorithm analyzing the economic feasibility of tower cranes was developed considering the rental, installation and removal costs. Third, a case study was conducted to prove the validity of the developed algorithm for selecting and installing an effective set of tower cranes at minimum cost.

Reliability Improvement Considering Effect of Dispersed Generator and Interruption Cost in Distribution Systems (분산전원의 영향과 정전비용을 고려한 신뢰도 향상)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.172-177
    • /
    • 2006
  • This paper presents a method to improve reliability considering dispersed generator(DG) installation and interruption cost with load types. It is used to the different interruption costs with load pattern of daily peak load. The objective functions such as power losses cost operation cost of DG, power buy cost and interruption cost are minimized for reliability improvement and efficient operation. The several indices for reliability evaluation are improved by dispersed generator installation. The proposed method is applied to IEEE 13 bus test systems to demonstrate its effectiveness.

A Study on the Dynamic Analysis of Mooring System During Hook-up Installation

  • Lee, Min Jun;Jo, Hyo Jae;Lee, Sung Wook;Hwang, Jea Hyuk;Kim, Jea Heui;Kim, Young Kyu;Baek, Dong Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.285-293
    • /
    • 2020
  • This study evaluated the Hook-up installation of an offshore site construction process, which is the final step in an offshore site installation process. During Hook-up installation, the offshore structure can have a detrimental effect on the work stability due to low-frequency motion. Moreover, economic costs can be incurred by the increase in available days of a tugboat. Therefore, this study developed a numerical analysis program to assess the dynamic behavior of mooring systems during hook-up installation to analyze the generally performed installation process and determine when the tugboat should be released. In this program, the behavior of an offshore structure was calculated using Cummin's time-domain motion equation, and the mooring system was calculated by Lumped mass method (LMM). In addition, a tugboat algorithm for hook-up installation was developed to apply the Hook-up procedure. The model used in the calculations was the barge type assuming FPSO (Floating production storage and off-loading) and has a taut mooring system connected to 16 mooring lines. The results of the simulation were verified by comparing with both MOSES, which is a commercial program, and a calculation method for restoring coefficient matrix, which was introduced by Patel and Lynch (1982). Finally, the offset of the structure according to the number of tugboats was calculated using the hook-up simulation, and the significant value was used to represent the calculation result.

A Study on the Optimization of New Renewable Energy Systems in Public-Purpose Facilities (공공용 업무시설의 신재생에너지시스템 최적화 연구)

  • Lee, Yong-Ho;Seo, Sang-Hyun;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.95-104
    • /
    • 2013
  • This study set out to devise an optimized system to take into account life cycle cost(LCC) and ton of carbon dioxide($TCO_2$) by applying the weighted coefficient method(WCM) to "public-purpose" facility buildings according to the mandatory 5% and 11% of new renewable energy in total construction costs and anticipated energy consumption, respectively, based on the changes of the public obligation system. (1) System installation capacity is applied within the same new renewable energy facility investment according to the mandatory 5% of new renewable energy in total construction costs. Both LCC and $TCO_2$ recorded in the descending order of geothermal, solar, and photovoltaic energy. The geothermal energy systems tended to exhibit an excellent performance with the increasing installation capacity percentage. (2) Optimal systems include the geothermal energy(100%) system in the category of single systems, the solar energy(12%)+geothermal energy(88%) system in the category of 2-combined systems, and the photovoltaic energy(12%)+solar energy(12%)+geothermal energy(76%) system and the photovoltaic energy(12%)+solar energy(25%)+geothermal energy(63%) system in the category of 3-combined systems. (3) LCC was the highest in the descending order of photovoltaic, geothermal and solar energy due to the influences of each energy source's correction coefficient according to the mandatory 11% of new renewable energy in anticipated energy consumption. The greater installation capacity percentage photovoltaic energy had, the more excellent tendency was observed. $TCO_2$ recorded in the descending order of geothermal, photovoltaic and solar energy with the decreasing installation capacity of photovoltaic energy. The greater installation capacity percentage a geothermal energy system had, the more excellent tendency it demonstrated. (4) Optimal systems include the geothermal energy(100%) system in the category of single systems, the photovoltaic energy(62%)+geothermal energy(38%) system in the category of 2-combined systems, and the photovoltaic energy(50%)+solar energy(12%)+geothermal energy(38%) system and the photovoltaic energy(12%)+solar energy(12%)+geothermal energy(76%) system in the category of 3-combined systems.

Analysis of Economic Feasibility of New & Renewable Energies ($\cdot$재생에너지 원별 경제성 분석 - 태양광, 풍력, 소수력 발전을 중심으로 -)

  • Kim Zin-Oh;Kim Jung-Wan;Boo Kyung-Jin
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.79-86
    • /
    • 2005
  • This study conducted an analysis of economic feasibility with unit generating costs calculated based on scenarios of capacity factors, discount rates, government supporting rates, installation costs. However, It Is clear that few new and renewable energies can meet the tariffs [government purchasing prices] set by the government in light of the current market reality. Without the government support, solar PV is not economically feasible at the tariff of \716.40/kWh. in the case of wind Power, the current tariff of \107.66/kWh is not enough to make it competitive except for a mid- and large-scale wind farm The analysis showed that even small hydro is not economically acceptable at the current tariff of \73.69/kWh.

  • PDF

Optimization of Grid Network for Offshore Wind Power Plant (해상풍력발전단지의 전력망 구성의 최적화에 관한 연구)

  • Moon, Won-Sik;Jo, Ara;Kim, Jae-Chul;Bae, In-Soo;Yoon, Gi-Gab;Park, Sang-Ho;Choy, Young-Do
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1094-1095
    • /
    • 2015
  • The costs of installation, loss, and energy not supplied energy for submarine cable of offshore wind power plant (OWPP) are very high because the level of technology is still in the early stage as well as because of the marine environments. Therefore, reducing the total costs of a grid network for OWPPs is very important for financial feasibility. In particular, it is needed to minimize the project cost for optimizing the grid design and offshore substation location of a OWPP. The suggested method can reduce the total system cost and make it lower compared with existing methods.

  • PDF

A Study on the Demand Modelling for District Cooling Energy Source (지역냉방 열원의 수요모형에 관한 연구)

  • Kim, Jin Hyung;Choi, Byung Ryeal
    • Environmental and Resource Economics Review
    • /
    • v.11 no.4
    • /
    • pp.633-657
    • /
    • 2002
  • This study presents a demand modelling for landfill gas, which is used as alternative energy source for district cooling business. By analyzing the cost minimizing behavior of producer facing with three alternative energy sources such as electricity, cooling heat water, and gas, a demand function for landfill gas is derived from the optimal operating time of gas fired production facility, and estimated using unpublished data, which are associated with Seoul city's development plan for Sang-am area. The estimation results repeals that Seoul City could supply the land-fill gas of 13.76 million cubic meters each year at the price of about 16 won per cubic meters. However, if the investment costs associated with installation of gas collecting facilities are treated as sunk costs, annual amount of gas supplied is expected to increase to 14.22 million cubic meters at a lower unit price of 14.76 won.

  • PDF

Storage Allocation in Multi-level VOD Network Using Dynamic Programming (동적계획법을 이용한 다계층 VOD 망의 저장량 결정)

  • Kim, Yeo-Keun;Cho, Myoung-Rai;Kim, Jae-Yun
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.202-213
    • /
    • 1996
  • Video-on-demand is an interactive service that provides programs (movie, home shopping, etc.) to users connected to a network. This service will require high bandwidth network and video servers with a large amount of storage capacity. From the viewpoint of system analysis, there are optimization problems to be solved. In this paper, we present a dynamic programming method for allocating the storage for programs being served in a multi-level video-on-demand network. In the optimization of the network resource, we consider the three kinds of costs: installation cost for video servers, program storage cost, and transmission (or communication) cost. The factors related to the costs are investigated. An example is shown to illustrate the proposed method.

  • PDF

A Study of Infill Optimization Methods Applied with Life-long Housing Certification Standards (장수명주택 인증기준별 최적화를 위한 Infill 연구)

  • Wang, Woo-Chul;Lim, Seok-Ho
    • Journal of the Korean housing association
    • /
    • v.27 no.6
    • /
    • pp.57-64
    • /
    • 2016
  • Life-long housing refers to housing units whose performance is certified by the head of a Life-long Housing certification authority with respect to durability, variability and ease of repair. Since life-long housing should be able to meet residents' demands for changes in living space, the space of the housing should be able to be varied by using a dry construction method, instead of a wet construction method. For life-long housing to be approved, the installation of infill systems that life-long housing certification standards is needed. At present, apartment houses are being constructed only in accordance with the general rating, which is the lowest rating in the life-long housing certification system. The reason for this is that, since the infill system was created, it has not yet been actively used due to a rise in construction costs when infill products are utilized. In this regard, this study seeks to propose ways to optimize infill usage and create scenarios that can minimize the costs of life-long housing construction, taking into consideration variations in construction costs based on the characteristics of infill systems applied to housing.