• Title/Summary/Keyword: Inspiratory pressure

Search Result 103, Processing Time 0.031 seconds

Effects of Five-month Training of Playing Harmonica on Pulmonary Function in Patients With Neuromuscular Disease: A Pilot Study

  • Kim, Bit-na-rae;Cynn, Heon-seock
    • Physical Therapy Korea
    • /
    • v.25 no.3
    • /
    • pp.60-67
    • /
    • 2018
  • Background: Progressive muscle weakness is aggravated not only in the skeletal muscles but also in the respiratory muscles in many patients with neuromuscular diseases (NMD). Inspiratory muscle training (IMT) has been reported as therapy for pulmonary rehabilitation to improve respiratory strength, endurance, exercise capacity, and quality of life, and to reduce dyspnea. Objects: The purpose of this study was to determine the effect of playing harmonica for 5 months on pulmonary function by assessing the force vital capacity (FVC), peak cough flow (PCF), maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), and maximal voluntary ventilation (MVV) in patients with NMD. Methods: Six subjects with NMD participated in this study. The subjects played harmonica once a week for 2 hours at a harmonica academy and twice a week for 1 hour at home. Thus, training was performed thrice a week for 23 weeks. The examiner assessed pulmonary function by measuring FVC in the sitting and supine positions and PCF, MIP, MEP, and MVV in the sitting position at the beginning of training and once a month for 5 months. Results: Both sitting and supine FVC significantly increased after playing harmonica (p=.042), as did MIP (p=.043) and MEP (p=.042). Conclusion: Playing harmonica can be used as an effective method to improve pulmonary function in patients with NMD.

The Effects of Respiratory Muscle Training on Respiratory Function, Respiratory Muscle Strength, and Cough Capacity in Stroke Patients (호흡근 강화 훈련이 뇌졸중 환자의 호흡기능, 호흡근력과 기침능력에 미치는 영향)

  • Jo, Myeong-Rae;Kim, Nan-Soo;Jung, Ju-Hyeon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.4
    • /
    • pp.399-406
    • /
    • 2014
  • PURPOSE: The purpose of this study was to examine the effects of respiratory muscle training on respiratory function, respiratory muscle strength, and cough capacity in stroke patients. METHODS: This study used a nonequivalent control group pre-post test design. We recruited thirty-four stroke patients(16male, 18female), who were assigned to intervention (n=17), or control (n=17) groups. Both groups participated in a conventional stroke rehabilitation program, with the intervention groups also receiving respiratory muscle training 20 minutes a day, three times a week, for 4 weeks. Respiratory function (forced vital capacity) and respiratory muscle strength (maximal inspiratory pressure, maximal expiratory pressure) were assessed by spirometry. Cough capacity (peak expiratory flow) was assessed using a peak flow meter. The collected data were analyzed by independent and paired t-tests. RESULTS: The intervention group showed a significant increase in the forced vital capacity (FVC), maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP) and peak expiratory flow (PEF) at the end of the program, while the control group showed no significant changes. CONCLUSION: This study showed that respiratory muscle training increased respiratory function, respiratory muscle strength, and cough capacity in stroke patients and prevented a decrease in cough capacity. These findings suggest that respiratory muscle training effect on respiratory function, respiratory muscle strength and cough capacity for rehabilitation in patients with stroke.

The Effect of External PEEP on Work of Breathing in Patients with Auto-PEEP (Auto-PEEP이 존재하는 환자에서 호흡 일에 대한 External PEEP의 효과)

  • Chin, Jae-Yong;Lim, Chae-Man;Koh, Youn-Suck;Park, Pyung-Whan;Choi, Jong-Moo;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.201-209
    • /
    • 1996
  • Background : Auto-PEEP which develops when expiratory lung emptying is not finished until the beginning of next inspiration is frequently found in patients on mechanical ventilation. Its presence imposes increased risk of barotrauma and hypotension, as well as increased work of breathing (WOB) by adding inspiratory threshold load and/or adversely affecting to inspiratory trigger sensitivity. The aim of this study is to evaluate the relationship of auto-PEEP with WOB and to evaluate the effect of PEEP applied by ventilator (external PEEP) on WOB in patients with auto-PEEP. Method : 15 patients, who required mechanical ventilation for management of acute respiratory failure, were studied. First, the differences in WOB and other indices of respiratory mechanics were examined between 7 patients with auto-PEEP and 8 patients without auto-PEEP. Then, we applied the 3 cm $H_2O$ of external PEEP to patients with auto-PEEP and evaluated its effects on lung mechanics as well as WOB. Indices of respiratory mechanics including tidal volume ($V_T$), repiratory rate, minute ventilation ($V_E$), peak inspiratory flow rate (PIFR), peak expiratory flow rate (PEFR), peak inspiratory pressure (PIP), $T_I/T_{TOT}$, auto-PEEP, dynamic compliance of lung (Cdyn), expiratory airway resistance (RAWe), mean airway resistance (RAWm), $p_{0.1}$, work of breathing performed by patient (WOB), and pressure-time product (PTP) were obtained by CP-100 Pulmonary Monitor (Bicore, USA). The values were expressed as mean $\pm$ SEM (standard error of mean). Results : 1) Comparison of WOB and other indices of respiratory mechanics in patients with and without auto-PEEP : There was significant increase in WOB ($l.71{\pm}0.24$ vs $0.50{\pm}0.19\;J/L$, p=0.007), PTP ($317{\pm}70$ vs $98{\pm}36\;cm$ $H_2O{\cdot}sec/min$, p=0.023), RAWe ($35.6{\pm}5.7$ vs $18.2{\pm}2.3\;cm$ H2O/L/sec, p=0.023), RAWm ($28.8{\pm}2.5$ vs $11.9{\pm}2.0cm$ H2O/L/sec, p=0.001) and $P_{0.1}$ ($6.2{\pm}1.0$ vs 2.9+0.6 cm H2O, p=0.021) in patients with auto-PEEP compared to patients without auto-PEEP. The differences of other indices including $V_T$, PEFR, $V_E$ and $T_I/T_{TOT}$ showed no significance. 2) Effect of 3 cm $H_2O$ external PEEP on respiratory mechanics in patients with auto-PEEP : When 3 cm $H_2O$ of external PEEP was applied, there were significant decrease in WOB ($1.71{\pm}0.24$ vs $1.20{\pm}0.21\;J/L$, p=0.021) and PTP ($317{\pm}70$ vs $231{\pm}55\;cm$ $H_2O{\cdot}sec/min$, p=0.038). RAWm showed a tendency to decrease ($28.8{\pm}2.5$ vs $23.9{\pm}2.1\;cm$ $H_2O$, p=0.051). But PIP was increased with application of 3 cm $H_2O$ of external PEEP ($16{\pm}2$ vs $22{\pm}3\;cm$ $H_2O$, p=0.008). $V_T$, $V_E$, PEFR, $T_I/T_{TOT}$ and Cdyn did not change significantly. Conclusion : The presence of auto-PEEP in mechanically ventilated patients was accompanied with increased WOB performed by patient, and this WOB was decreased by 3 cm $H_2O$ of externally applied PEEP. But, with 3 cm $H_2O$ of external PEEP, increased PIP was noted, implying the importance of close monitoring of the airway pressure during application of external PEEP.

  • PDF

Effect of Pressure Rise Time on Tidal Volume and Gas Exchange During Pressure Control Ventilation (압력조절환기법에서 압력상승시간(Pressure Rise Time)이 흡기 일환기량 및 가스교환에 미치는 영향)

  • Jeoung, Byung-O;Koh, Youn-Suck;Shim, Tae-Sun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Lim, Chae-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.5
    • /
    • pp.766-772
    • /
    • 2000
  • Background : Pressure rise time (PRT) is the time in which the ventilator aclieves the set airway pressure in pressure-targeted modes, such as pressure control ventilation (PCV). With varying PRT, in principle, the peak inspiratory flow rate of the ventilator also varies. And if PRT is set to a shorter duration, the effective duration of target pressure level would be prolonged, which in turn would increase inspiratory tidal volume(Vti) and mean airway pressure (Pmean). We also postulated that the increase in Vti with shortening of PRT may relate inversely to the patients' basal airway resistance. Methods : In 13 paralyzed patients on PCV (pressure control 18$\pm$9.5 cm $H_2O$ $FIO_2\;0.6\pm0.3$, PEEP 5$\pm$3 cm $H_2O$, f 20/min, I : E1 : 2) with Servo 300 (Siemens-Elema, Solna, Sweden) from various causes of respiratory failure, PRT of 10 %, 5 % and 0 % were randomly applied. At 30 min of each PRT trial, peak inspiratory flow (PIF, L/sec), Vti (ml), Pmean (cm $H_2O$) and ABGA were determined. Results : At PRT 10%, 5%, and 0%, PIF were 0.69$\pm$0.13, 0.77$\pm$0.19, 0.83$\pm$0.22, respectively (p<0.001). Vti were 425$\pm$94, 439$\pm$101, 456$\pm$106, respectively (p<0.001), and Pmean were 11.2$\pm$3.7, 12.0$\pm$3.7, 12.5$\pm$3.8, respectively (p<0.001). pH were 7.40$\pm$0.08, 7.40$\pm$0.92, 7.41$\pm$0.96, respectively (p=0.00) ; $PaCO_2$ (mm Hg) were 47.4$\pm$15.8, 47.2 $\pm$15.7, 44.6$\pm$16.2, respectively (p=0.004) ; $PAO_2-PaO_2$ (mm Hg) were 220$\pm$98, 224$\pm$95, 227$\pm$94, respectively (p=0.004) ; and $V_n/V_T$ as determined by ($PaCO_2-P_E-CO_2$)/$PaCO_2$ were 0.67$\pm$0.07, 0.67$\pm$0.08, 0.66$\pm$0.08, respectively (p=0.007). The correlation between airway resistance and change of Vti from PRT 10% to 0% were r= -0.243 (p=0.498). Conclusion : Shortening of pressure rise timee during PCV was associated with increased tidal volume, increased mean airway pressure and lower $PaCO_2$.

  • PDF

The Changes of Respiratory Mechanics by a Bronchodilator Inhalation Under the Variable Level of PEEP in Patients with Acute Respiratory Distress Syndrome (급성호흡곤란증후군에서 기도확장제 투여 전후에 호기말양압 수준의 변화가 호흡역학에 미치는 영향)

  • Hong, Sang-Bum;Koh, Youn-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.3
    • /
    • pp.251-259
    • /
    • 2002
  • Background : Reduced lung compliance and increased lung resistance are the primary lung mechanical abnormalities in acute respiratory distress syndrome (ARDS). Although there is little information regarding the mechanisms responsible for the increases in the respiratory resistance of ARDS, bronchodilators have been frequently administered in mechanically ventilated ARDS patients. To determine the effect of a bronchodilator on the respiratory mechanics depending on the level of applied positive end-expiratory pressure (PEEP), the changes in the respiratory mechanics by salbutamol inhalation was measured under the variable PEEP level in patients with ARDS. Materials and Methods : Fifteen mechanically ventilated paralyzed ARDS patients (14 of male, mean age 57 years) were enrolled in this study. The respiratory system compliance, and the maximum and minimum inspiratory resistance were obtained by the end-inspiratory occlusion method during constant flow inflation using the CP-100 pulmonary monitor (Bicore, Irvine, CA, USA). The measurements were performed at randomly applied 8, 10 and 12 cm $H_2O$ PEEP before and 30 mins after administrating salbutamol using a meter-dose-inhaler (100ug${\times}$6). Results : 1) The maximum inspiratory resistance of the lung was higher than the reported normal values due to an increase in the minimal inspiratory resistance & additional resistance. 2) The maximum inspiratory resistance and peak airway pressure were significantly higher at 12cm $H_2O$ of PEEP compared with those at 10cm $H_2O$ of PEEP. 3) Salbutamol induced a significant decrease in the maximum and the minimum inspiratory resistance but no significant change in the additional resistance only was observed at 12cm $H_2O$ of PEEP(from $15.66{\pm}1.99$ to $13.54{\pm}2.41$, from $10.24{\pm}2.98$ to $8.04{\pm}2.34$, and from $5.42{\pm}3.41$ to $5.50{\pm}3.58cm$ $H_2O$/L/sec, respectively). 4)The lung compliance did not change at the applied PEEP and salbutamol inhalation levels. Conclusion : The bronchodilator response would be different depending on the level of applied PEEP despite the increased respiratory resistance in patients with ARDS.

Effects of small tidal volume and positive end-expiratory pressure on oxygenation in pressure-controlled ventilation-volume guaranteed mode during one-lung ventilation

  • Byun, Sung Hye;Lee, So Young;Jung, Jin Yong
    • Journal of Yeungnam Medical Science
    • /
    • v.35 no.2
    • /
    • pp.165-170
    • /
    • 2018
  • Background: The purpose of this study was to investigate whether tidal volume (TV) of 8 mL/kg without positive end-expiratory pressure (PEEP) and TV of 6 mL/kg with or without PEEP in pressure-controlled ventilation-volume guaranteed (PCV-VG) mode can maintain arterial oxygenation and decrease inspiratory airway pressure effectively during one-lung ventilation (OLV). Methods: The study enrolled 27 patients undergoing thoracic surgery. All patients were ventilated with PCV-VG mode. During OLV, patients were initially ventilated with TV 8 mL/kg (group TV8) without PEEP. Ventilation was subsequently changed to TV 6 mL/kg with PEEP ($5cmH_2O$; group TV6+PEEP) or without (group TV6) in random sequence. Peak inspiratory pressure ($P_{peak}$), mean airway pressure ($P_{mean}$), and arterial blood gas analysis were measured 30 min after changing ventilator settings. Ventilation was then changed once more to add or eliminate PEEP ($5cmH_2O$), while maintaining TV 6 mL/kg. Thirty min after changing ventilator settings, the same parameters were measured once more. Results: The $P_{peak}$ was significantly lower in group TV6 ($19.3{\pm}3.3cmH_2O$) than in group TV8 ($21.8{\pm}3.1cmH_2O$) and group TV6+PEEP ($20.1{\pm}3.4cmH_2O$). $PaO_2$ was significantly higher in group TV8 ($242.5{\pm}111.4mmHg$) than in group TV6 ($202.1{\pm}101.3mmHg$) (p=0.044). There was no significant difference in $PaO_2$ between group TV8 and group TV6+PEEP ($226.8{\pm}121.1mmHg$). However, three patients in group TV6 were dropped from the study because $PaO_2$ was lower than 80 mmHg after ventilation. Conclusion: It is postulated that TV 8 mL/kg without PEEP or TV 6 mL/kg with $5cmH_2O$ PEEP in PCV-VG mode during OLV can safely maintain adequate oxygenation.

Application of respiratory function tests in patients with neurological diseases

  • Ilhan Yoo;Seok-Jin Choi;Jung-Joon Sung
    • Annals of Clinical Neurophysiology
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Breathing is controlled by complex interactions between the central and peripheral nervous systems in conjunction with the respiratory system. Neurological diseases predispose patients to nocturnal desaturation and pneumonia due to respiratory dysfunction, which increases mortality, daytime sleepiness and fatigue, and reduces the quality of life. Respiratory function tests are required to identify respiratory function decline and to consider compensatory management. This review summarizes the characteristics of several respiratory function tests and their applications to neurological diseases.

The Aerodynamic & Respiratory Muscle Pressure Aspects of Patients with Adductor Spasmodic Dysphonia (내전형 경련성발성장애의 호흡압력과 공기역학적 특징)

  • Nam, Do-Hyun;Choi, Seong-Hee;Choi, Jae-Nam;Choi, Hong-Shik
    • Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.203-213
    • /
    • 2005
  • This study was conducted to investigate the respiratory and aerodynamic function of adductor spasmodic dysphonia (ADSD) patients. Participants were (1) 18 females SD patients with non- Botulinum toxin injection (2) 14 females SD patients who had taken treatment of Botulinum toxin injection. (3) 14 age- and sex- matched normal female controls. Spirometer and phonatory function analyzer were used for respiratory muscle pressure (MIP: Maximum inspiratory pressure), MEP: Maximum expiratory pressure)& MPT(Maximum phonation time) and aerodynamic(F0:Fundamental frequency, intensity, MFR: Mean flow late, Psub: Subglottal pressure) measurement. The results were as follows: (1) Normal group was significantly higher in MIP, MEP, MPT than two SD groups (p < .05); (2) MPT was significantly lower in SD with non-Botulinum toxin injection group than SD with the treatment experience of Botulinum toxin injection (p < .05); (3) All aerodynamic parameters, F0, intensity, MFR, Psub, were not significantly different among three groups(p > .05).The reason of short MPT in ADSD may use lower respiratory pressure than normal group as strategy to decrease their tremulous voice quality. Moreover respiratory muscle pressure was lower than normal group regardless of botulinum toxin injection treatment.

  • PDF

Comparison of Respiratory Mechanics and Gas Exchange Between Pressure-controlled and Volume-controlled Ventilation (압력조절환기법과 용적조절환기법의 호흡역학 몇 가스교환의 비교)

  • Jeong, Seong-Han;Choi, Won-Jun;Lee, Jung-A;Kim, Jin-A;Lee, Mun-Woo;Shin, Hyoung-Shik;Kim, Mi-Kyeong;Choe, Kang-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.5
    • /
    • pp.662-673
    • /
    • 1999
  • Background : Pressure-controlled ventilation (PCV) is frequently used recently as the initial mode of mechanical ventilation in the patients with respiratory failure. Theoretically, because of its high initial inspiratory flow, pressure-controlled ventilation has lower peak inspiratory pressure and improved gas exchange than volume-controlled ventilation (VCV). But the data from previous studies showed controversial results about the gas exchange. Moreover, the comparison study between PCV and VCV with various inspiration : expiration time ratios (I : E ratios) is rare. So this study was performed to compare the respiratory mechanics and gas exchange between PCV and VCV with various I : E raitos. Methods : Nine patients receiving mechanical ventilation for respiratory failure were enrolled. They were ventilated by both PCV and VCV with various I : E ratios (1 : 2, 1 : 1.3 and 1.7 : 1). $FiO_2$, tidal volume, respiratory rate and external positive end-expiratory pressure (PEEP) were kept constant throughout the study. After 20 minutes of each ventilation mode, arterial blood gas, airway pressures, expired $CO_2$ were measured. Results : In both PCV and VCV, as the I : E ratio increased, the mean airway pressure was increased, and $PaCO_2$ and physiologic dead space fraction were decreased. But P(A-a)$O_2$ was not changed. In all three different I : E ratios, peak inspiratory pressure was lower during PCV, and mean airway pressure was higher during PCV. But $PaCO_2$ level, physiologic dead space fraction and P(A-a)$O_2$ were not different between PCV and VCV with three different I : E ratios. Conclusion : There was no difference in gas exchange between PCV and VCV under the same tidal volume, frequency and I : E ratio.

  • PDF

Effects of Chest Expansion Resistance Exercise on Chest Expansion and Maximal Inspiratory Pressure in Patients with Stroke (흉곽확장저항운동이 뇌졸중 환자의 흉곽가동범위와 최대흡기압에 미치는 영향)

  • Kim, Chang-Beom;Choi, Jong-Duk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • PURPOSE: This study compared the effects of chest expansion resistance exercise (CERE) and breathing retraining (BRT) on stroke patients' chest expansion and maximal inspiratory pressure(MIP), thereby intending to present an effective intervention method for enhancing their respiratory functions. METHODS: The subjects were 30 stroke patients and randomly and equally assigned to a CERE group (10), a BRT group (10), and a control group (10). The intervention was applied to each group five times per week, 30 minutes per each time, for six weeks. A tapeline was used to measure upper and lower chest expansion and MIP prior to and after the intervention and the results were compared. RESULTS: After the intervention, the upper and lower chest expansion was considerable in the CERE group (p<.01), significant in the BRT group (p<.05) but was not significant in the control group (p>.05). According to the post-hoc test result, the upper and lower chest of the CERE group and the BRT group significantly expanded compared to that of the control group (p<.05) and the upper and lower chest of the CERE group statistically significantly expanded relative to that of the BRT group (p<.05). According to the MIP evaluation result, the CERE group saw considerable improvement (p<.01) and the BRT group underwent significant changes (p<.05), but there were no significant changes in the control group (p>.05). The post-hoc test result was that the CERE group and the BRT group saw significant improvement compared to the control group (p<.05) and the CERE group experienced statistically significant enhancement relative to the BRT group (p<.05). CONCLUSION: As an intervention for respiratory function improvement, CERE is considered effective for strengthening respiratory muscles and promoting chest expansion through manual resistance by a therapist.