• 제목/요약/키워드: Inspection Mechanism

검색결과 242건 처리시간 0.016초

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF

3D 프린트를 활용한 자기공명영상검사 보조기구 제작 (Making Aids of Magnetic Resonacnce Image Susing 3D Printing Technology)

  • 최우전;예수영;김동현
    • 한국방사선학회논문지
    • /
    • 제10권6호
    • /
    • pp.403-409
    • /
    • 2016
  • MRI검사는 조직의 대조도가 우수하여 근골격계 진단에 유용한 검사방법이다. 근골격계 검사 시 환자상태에 따라 보조기구가 이용되는 보조기구의 종류가 다양하지 않을 뿐 아니라 비용도 비싸다. 이에 본 연구는 3D 프린팅 기술의 활용하여 MRI 검사 보조기구를 제작하였다. 보조기구 제작과정으로는 3D 모델링(3D MAX.2014, Fusion360)을 사용해 STL파일로 변환 후 슬라이싱 프로그램(Cubicreater 2.1ver., Cura 15.4ver)을 통해 G-code로 변환시킨 후 FDM방식의 프린트(Cubicon Style, MICRO MAKE)로 출력하였다. 출력물이 MRI영상에 미치는 SNR을 평가하기 위해 FDM에서 사용하되는 PLA, ABS, TPU를 두께 3mm로 된 Water Phantom 케이스를 제작하여 case 사용 전, 후를 시험을 실시하여 비교하였으며, 보조기구 사용 전, 후의 임상영상을 정성적으로 평가 하였다. 영상을 획득하여 나타난 Warter Phantom의 SNR은 T1 NON $123.778{\pm}28.492$, PLA $123.522{\pm}28.373$, ABS $124.461{\pm}25.716$, TPU $124.843{\pm}27.272$ 로 평가되었다. T2 NON $127.421{\pm}26.949$, PLA $124.501{\pm}2 7.768$, ABS $128.663{\pm}26.549$, TPU $130.171{\pm}25.998$ 로 평가되었다. 그 결과 통계 적으로 유의미한 차이를 보이지 않았다. 보조기구의 사용 전, 후의 임상영상 평가 결과 고식적 방법 $3.20{\pm}0.88$, 보조기구 사용 $3.95{\pm}0.76$ 으로 보조기구 사용 후 영상의 질이 향상되었다. 향후 3D프린팅을 이용한 보조기구의 제작은 임상적으로 사용이 가능할 것으로 생각되고, 환자들의 검사 시 보다 안전하고 편안한 보조기구제작을 할 수 있어 기존에 쓰이는 보조기구의 문제점들을 개선하는 대안이 될 것으로 전망된다.