• 제목/요약/키워드: Inspect defects

검색결과 85건 처리시간 0.021초

Thickness measurements of a Cr coating deposited on Zr-Nb alloy plates using an ECT pancake sensor

  • Jeong Won Park;Bonggyu Ji;Daegyun Ko;Hun Jang;Wonjae Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3260-3267
    • /
    • 2023
  • Zr-Nb alloy have been widely used as fuel rods in nuclear power plants. However, from the Fukushima nuclear accident, the weakness of the rod was revealed under harsh conditions, and research on the safety of these types of rods was conducted after the disaster. The method of depositing chromium onto the existing Zr-Nb alloy fuel rods is being considered as a means by which to compensate for the weakness of Zr-Nb alloy rods because chromium is strong against oxidation at high temperatures and has high strength. In order to secure these advantages, it is important to maintain the Cr thickness of the rods and properly inspect the rods before and during their use in power generation. Eddy current testing is a typical means of evaluating the thickness of thin metals and detecting surface defects. Depending on the size and shape of the inspected object, various eddy current sensors can be applied. In particular, because pancake sensors can be manufactured in very small sizes, they can be used for inspections even in narrow spaces, such as a nuclear fuel assembly. In this study, an eddy current technique was developed to confirm the feasibility of Cr coating thickness evaluations. After determining the design parameters of the pancake sensor by means of a FEM simulation, a FPCB pancake sensor was manufactured and the optimal frequency was selected by measuring minute changes in the Cr-coating thickness using the developed sensor.

3D 출력 의료용 금속 임플란트에 대한 3D 복원 (3D Reconstruction of 3D Printed Medical Metal Implants)

  • 예병훈;김구진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권5호
    • /
    • pp.229-236
    • /
    • 2023
  • 3D 출력된 의료용 임플란트(implant) 부품은 보통 표면에 결함이 발생되므로, 출력 후 표면을 검사하는 과정이 필요하다. 자동화된 표면 검사를 수행하기 위해서는 임플란트를 3D 스캔하여 점군(point cloud)과 같은 스캔 모델로 복원하는 방법이 효과적이다. 스캔 모델을 구성할 때, 임플란트는 일반적인 3D 출력 제조 부품과 다른 특성들을 가지므로, 임플란트의 형태와 재료의 특성에 대한 고려가 필요하다. 본 논문에서는 의료용 임플란트 부품의 한 종류인 금속 bone-plate의 3D 출력물에 대해 스캔 모델로 복원하는 방법을 제안한다. 다각도의 시점에서 3D 스캔을 수행하여 다수의 부분 스캔 데이터를 생성한 뒤, 이들에 대해 정렬(alignment)과 정합(merging)을 수행하여 스캔 모델로 복원한다. 또한, 실험을 통해 스캔 모델로 복원하는 과정을 보인다.

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

핵연료 피복재 튜브의 원격장와전류 탐상을 위한 차폐된 관통형 탐촉자의 수치해석적 설계 (Numerical Design of Shielded Encircling Probe for RFEC Testing of Nuclear Fuel Cladding Tube)

  • 신영길;신상호
    • 비파괴검사학회지
    • /
    • 제21권6호
    • /
    • pp.650-657
    • /
    • 2001
  • 본 논문에서는 핵연료 피복재 튜브를 검사하기 위한 차폐된 관통형 원격장와전류 탐촉자의 설계과정을 설명하고, 이 탐촉자에 의한 결함신호의 특성을 조사하였다. 먼저, 자기 에너지가 튜브 내부로 관통될 수 있도록 여자코일 외부를 전기적으로 절연된 얇은 철 박판을 적층시켜 차폐시켰다. 그리고 유한요소 해석을 통하여 차폐의 효과와 탐상 주파수를 연구하였으며, 센서코일의 위치를 결정하였다. 그러나 이렇게 설계된 탐촉자를 사용하여 예측된 결함신호는 센서코일이 결함을 지날 때의 결함지시가 명확하지 않았으며, 여자코일이 결함을 지날 때의 결함지시도 차폐체로부터의 영향이 나타나는 등 여자코일로부터 자속이 직접적으로 센서코일에 영향을 미친다는 사실을 알게 되었다. 따라서 센서코일도 여자코일과 같은 형태로 차폐시켰는데 이 차폐의 효과는 놀라울 정도로 결함신호의 특성을 향상시켰다. 최종적으로 설계된 탐촉자를 사용하여 수치 모델링을 수행한 결과는 관내삽입 원격장와전류 탐촉자를 사용하였을 때의 신호와 매우 흡사한 신호특성을 보였다. 즉, 위상신호는 내부결함과 외부결함에 대하여 거의 동일한 민감도를 보였으며, 위상신호의 세기와 결함의 깊이 사이에 선형적인 관계가 있음이 관찰되었다.

  • PDF

Material Discrimination Using X-Ray and Neutron

  • Jaehyun Lee;Jinhyung Park;Jae Yeon Park;Moonsik Chae;Jungho Mun;Jong Hyun Jung
    • Journal of Radiation Protection and Research
    • /
    • 제48권4호
    • /
    • pp.167-174
    • /
    • 2023
  • Background: A nondestructive test is commonly used to inspect the surface defects and internal structure of an object without any physical damage. X-rays generated from an electron accelerator or a tube are one of the methods used for nondestructive testing. The high penetration of X-rays through materials with low atomic numbers makes it difficult to discriminate between these materials using X-ray imaging. The interaction characteristics of neutrons with materials can supplement the limitations of X-ray imaging in material discrimination. Materials and Methods: The radiation image acquisition process for air-cargo security inspection equipment using X-rays and neutrons was simulated using a GEometry ANd Tracking (Geant4) simulation toolkit. Radiation images of phantoms composed of 13 materials were obtained, and the R-value, representing the attenuation ratio of neutrons and gamma rays in a material, was calculated from these images. Results and Discussion: The R-values were calculated from the simulated X-ray and neutron images for each phantom and compared with those obtained in the experiments. The R-values obtained from the experiments were higher than those obtained from the simulations. The difference can be due to the following two causes. The first reason is that there are various facilities or equipment in the experimental environment that scatter neutrons, unlike the simulation. The other is the difference in the neutron signal processing. In the simulation, the neutron signal is the sum of the number of neutrons entering the detector. However, in the experiment, the neutron signal was obtained by superimposing the intensities of the neutron signals. Neutron detectors also detect gamma rays, and the neutron signal cannot be clearly distinguished in the process of separating the two types of radiation. Despite these differences, the two results showed similar trends and the viability of using simulation-based radiation images, particularly in the field of security screening. With further research, the simulation-based radiation images can replace ones from experiments and be used in the related fields. Conclusion: The Korea Atomic Energy Research Institute has developed air-cargo security inspection equipment using neutrons and X-rays. Using this equipment, radiation images and R-values for various materials were obtained. The equipment was reconstructed, and the R-values were obtained for 13 materials using the Geant4 simulation toolkit. The R-values calculated by experiment and simulation show similar trends. Therefore, we confirmed the feasibility of using the simulation-based radiation image.