• Title/Summary/Keyword: Insoluble phosphate

Search Result 97, Processing Time 0.026 seconds

Effect of Amino Acid Solution for Cell Growth and MPS Activity of Mineral Phosphate Microorganisms. (아미노산액 처리에 의한 인산가용화균주의 생육 및 가용화 효과)

  • 이진우;정연주;최시림;김재훈;유주순;김영길;최용락
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.490-495
    • /
    • 2004
  • Phosphate-solubilizing activities of the two strains (Burkholderia sp. DA23 and Klebsiella sp. DA7l-1) against tri-calcium phosphate and hydroxyapatite were quantitatively determined. Two strains were found to solubilize two types of insoluble phosphate different amounts of amino acid solutions in liquid culture. MPS ability of the strains was increased with concentration of amino acid addition. The optimal solubilization condition of insoluble phosphate in sucrose minimal medium were 0.1% amino acid solution, respectively. The efficiency of amino acid addition was no difference between the two types of insoluble phosphate, tri-calcium phosphate and hydroxyapatite.

Studies on the activities of ALPase, ACPase, ATPase and accumulation of volutin granules upon growth phase in saccharomyces uvarum (Saccharomyces uvarum의 배양시기에 따른 ALPase, ACPase, ATPase 활성도와 volutin과립 축적량)

  • 이기성;최영길
    • Korean Journal of Microbiology
    • /
    • v.23 no.2
    • /
    • pp.90-100
    • /
    • 1985
  • The present study was designed to investigate cellular regulation of phosphate metabolism between catabolically repressed and derepressed states in yeast (Saccharomyces uvarum). The activities of various phospatases and the contents of phosphate compounds were detected according to the culture phase and various phosphate concentrations. As the results, Saccharomyces uvarum derepressed many phosphate metabolizing enzymes such as alkaline phosphatase, acid phosphatase and ATPase more than ten fold simultaneously during catabolic repression (phospgate and sugar starvation). At the same state, the amounts of orthophosphate, nucleotidic labile phosphate and acid soluble polypgosphate were increased, compared to basal levels of normally cultivated cells. $Mg^{++}-stimulated$ type among all phospatases was appeared to have most of the enzyme activity. It could be postulated that $K^+ -stimulated$ alkaline phosphatase was directly or indirectly correlated with the synthesis of acid insoluble polyphosphate $Mg^{++}-stimulated$ phosphatase with the degradation of polyphosphates. In case of cultivation in the medium supplemented with sugar and phosphate (catabolic derepression), phospgatase activities except for alkaline phosphatase were decreased rapidly through the progressive batch culture, After 12 hrs culture, at early exponential phase, the cellular accumulation of acid insoluble polyphosphate increased about 5 fold, compared to those of the starved cells. Under catabolic repression, it could be postulated that intracellular phosphate metabolism was regulated by derepressions of phosphatases. The function of polyphosphate system was shown to compensate the ATP/ADP system as phosphate donor and energy source especially during catabolic repression.

  • PDF

Solubilization of Insoluble Phosphates by Penicillium sp. GL-101 Isolated from Soil (토양에서 분리한 Penicillium sp. GL-101에 의한 난용성 인산염의 가용화)

  • Choi, Myoung-Chul;Chung, Jong-Bae;Sa, Tong-Min;Lim, Sun-Uk;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.329-333
    • /
    • 1997
  • Phosphate solubilizing microorganisms (1,000 bacteria and 200 fungi) were isolated from soil around Kyungnam and Kyungbook regions using potato dextrose agar-calcium phosphate medium. A fungus with the greatest phosphate solubilizing activity was selected and identified to Penicillium sp. GL-101, based on the morphological characteristics of conidiophore and conidia; flask shape of phialide, simple branching type of conidiophore, and columnar shape of conidial head, in malt extract agar and potato dextrose agar media. The optimum temperature and initial pH to solubilize rock phosphate in potato dextrose broth-rock phosphate medium were $25^{\circ}C$ and pH 7.5, respectively. In these optimum conditions, phosphate solubilizing activities of Penicillium sp. GL-101 against four types of insoluble phosphate: tricalcium-phosphate, aluminium phosphate, hydroxyapatite and rock phosphate, were quantitatively determined. As results, this fungus highly discharged free phosphates to the culture broth with the concentrations of 1,152 ppm against tricalcium-phosphate, 565 ppm against rock phosphate, 292 ppm against aluminium phosphate, and 217 ppm against hydroxyapatite, respectively.

  • PDF

Characteristics of Insoluble Phosphates Solubilizing by Klebsiella sp. DA71-1/pLYJ (Klebsiella sp. DA71-1/pLYJ의 난용성 인산염 가용화 특성)

  • Ryu, Ah-Reum;Lee, Jin-Woo;Lee, Yong-Seok;Lee, Sang-Cheol;Chung, Soo-Yeol;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.676-682
    • /
    • 2006
  • To develop high efficiency biofertilizer solubilizing insoluble phosphates, lactate dehydrogenase (ldh) gene was isolated from Staphylococcus sp. LJ2. Genetic constructions were carried out using the pGEM-T-easy vector and pHSG398. Recombinant DNA plasmids containing the ldh gene were transferred to Klebsiella sp. DA71-1 by electroporation. The selected transformant was named as a DA71-1/pLYJ. The insoluble phosphates solubilization activity of DA71-1/pLYJ was higher than that of DA71-1 at various culture conditions. Glucose was the best carbon source for insoluble phosphates solubilization among the used carbon sources. Maximal insoluble phosphates solubilizing was found in sucrose minimal (SM) medium containing 3% glucose. The solubilizing activity of DA71-1/pLYJ against three types of insoluble phosphates, such as tri-calcium phosphate, hydroxyapatite, aluminium phosphate, were quantitatively determined. The optimal temperature and initial pH to solubilize insoluble phosphates in the SM medium was $37^{\circ}C$ and pH 5.0, respectively.

Rapid Screen for Bacteria Solubilzing Insoluble Phoshpate on Agar Plate

  • Son, Hong-Joo;Kang, Sung-Il;Kim, Yong-Gyun;Kim, Hee-Goo;Lee, Sang-Joon
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.64-65
    • /
    • 2000
  • Insoluble phosphate-solubilizing bacteria are routinely screened by a plate assay method using Pikovskaya agar and a modified Pikovskaya medium. A modified Pikovskaya medium to improve the clarity of the yellow-colored halo has not necessarity improved the plate assay. Colonies of phosphate-solubilizing bacteria tested could be redily selected after 48 h of incubation by green-colored colony formation on plate in which bromcresol green(BCG) was included. Among them, two bacterial strains did not produce distinct yellow halos after 48 h of incubation. We suggest that the green colony formation on plate medium containing BCG is advantageous ofr rapid isolating phosphate-solubilizing bacteria directly from soil.

Effect of magnesium-deficiency on the biosynthesis of nucleic acid, phosphoprotein, and phospholipid in Chlorella cells (Chlorella 세포의 핵산 인단백질 및 인지질의 생합성에 미치는 마그네슘의 결핍 효과)

  • 이영록
    • Journal of Plant Biology
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 1968
  • Chlorella ellipsoidea were grown in a Mg-free medium. Aliquots of the algal cell were taken out at the beginning and predetermined time intervals during the culture and were analyzed the contents of phosphate in various fractions of the cell constituents. The results obtained were compared with those of the control. When Chlorella cells were grown in a Mg-free medium, the contents of phosphate in the DNA protein, RNA-olyphosphate complex, nucleotidic-lbileP, and PCA-soluble, fractions decreased compared with those of the control, while the content of acid insoluble polyphosphate increased significantly. On the otherhand, RNA-P and lipid-P showed the tendency of decrease at the early stage of the culture, but they were increased more than those in the control as culture proceeds. It is showed that phosphate turnover from acid-insoluble polyphosphate into DNA, protein, and RNA-polyphosphate complex was inhibited by magnesium-deficiency of the cells.

  • PDF

Turnover of Phosphate Compounds in Chlorella cells in a P-free medium (인산결핍배지에 있어서의 Chlorella 세포내의 인산화합물의 전환)

  • 이영녹
    • Journal of Plant Biology
    • /
    • v.9 no.1_2
    • /
    • pp.1-6
    • /
    • 1966
  • Using the Chlorella cells which had been uniformly labeled with $^{32}P$, the distribution of phosphorus in various fractions of cell material was investigated. Uniformly $^{32}P$-labeled Chlorella cells were further grown in a P-free medium, and some protions of the cells were taken out at intervals during the culture, and subjected to analyze the contents of $^{32}P$ in various fractins of the cell constituents. 2. Analysis of the $^{32}P$-labeled Chlorella cells showed that the highest in P-content was the fraction of RNA followed by those of lipid, RNA-polyphosphate complex, acid-insoluble polyphosphate, acid-soluble polyphosphate, DNA and protein. 3. During the culture of $^{32}P$-labeled Chlorella cells in a P-free medium, amounts of phosphate in DNA, protein and lipid fractions increased, while the P-contents in the fraction of RNA-polyphosphate complex decreased as well as those of acid-insoluble polyphosphate and acid-soluble polyphosphate fractions. 4. It was inferred that phosphorus used in the syntheses of DNA and protein was taken from polyphosphates of the cells, and RNA-polyphosphate complex would play an important role as a phosphate pool.

  • PDF

Isolation and Cultural Characteristics of a Phosphate-Solubilizing Bacterium, Aeromonas hydrophila DA57 (인산가용화균 Aeromonas hydrophila DA 57의 분리와 배양 중 가용화특성)

  • Song, Ok-Ryul;Lee, Seung-Jin;Kim, Se-Hoon;Chung, Soo-Yeol;Cha, In-Ho;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.251-256
    • /
    • 2001
  • To develop biofertilizer solubilizing inorganic phosphate, a bacterium having high abilities to solubilize inorganic phosphate were isolated from cultivated soils. The strain was identified to Aeromonas hydrophila DA57, based on the physiological and biochemical properties. The optimum temperature and initial pH to solubilize insoluvle phosphate in sucrose minimal medium were $30^{\circ}C$ and pH 7.0, respectively. In these conditions phosphate solubilizing activities of the strain against three types of insoluble phosphate were quantitatively determined. It was possivle to distinguish between solubilization through release of gluconic acid and still unknown mechanism. Aemmonas hydrophila DA57 harbored a 4.5 kb cryptic plasmid.

  • PDF

Stress Induced Phosphate Solubilization by Aspergillus awamori bxq33110 Isolated from Waste Mushroom Bed of Agaricus bisporus

  • Walpola, Buddhi Charana;Song, June-Seob;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.428-434
    • /
    • 2012
  • A fungal strain, capable of solubilizing insoluble phosphate under diverse temperature, pH and salt conditions was isolated from Waste Mushroom bed of Agaricus bisporus in South Korea. Based on 18S rRNA analysis, the strain was identified as Aspergillus awamori bxq33110. The strain showed maximum phosphate solubilization in AYG medium (525 ${\mu}g\;mL^{-1}$) followed by NBRIP medium (515 ${\mu}g\;mL^{-1}$). The strain solubilized $Ca_3(PO_4)_2$ to a greater extent and rock phosphate and $FePO_4$ to a certain extent. However $AlPO_4$ solubilizing ability of the strain was found to be very low. Glucose at the rate of 2% ($561{\mu}g\;mL^{-1}$) was found be the best carbon source for Aspergillus awamori bxq33110 to solubilize maximum amount of phosphate. However, no significant difference ($P{\leq}0.05$) in phosphorus solubilization was found between 1% and 2% glucose concentrations. $(NH_4)_2SO_4$ was the best nitrogen source for Aspergillus awamori bxq33110 followed by $NH_4Cl$ and $NH_4NO_3$. At pH 7, temperature $30^{\circ}C$ and 5% salt concentration (674 ${\mu}g\;mL^{-1}$) were found to be the optimal conditions for insoluble phosphate solubilization. However, strain Aspergillus awamori bxq33110 was shown to have the ability to solublize phosphate under different stress conditions at $30-40^{\circ}C$ temperature, pH 7-10 and 0-10% salt concentrations indicating it's potential to be used as bio-inoculants in different environmental conditions.

Conditions for Soluble Phosphate Production by Environment-Friendly Biofertilizer Resources, Pseudomonas fluorescens (환경친화적 미생물비료 자원 Pseudomonas fluorescens RAF15에 의한 가용성 인산 생산에 영향을 미치는 조건)

  • Park, Ki-Hyun;Park, Geun-Tae;Kim, Sung-Man;Lee, Chung-Yeol;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1033-1037
    • /
    • 2008
  • The effects of inorganic salts, inoculum concentration, aeration rate and shaking speed on insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 were investigated. Soluble phosphate production was dependent on the presence of $MgCl_2{\cdot}6H_2O$ and $MgSO_4{\cdot}7H_2O$ in the medium. Supplementation of medium with 0.01% $CaCl_2{\cdot}2H_2O$ and 0.01% NaCl slightly increased soluble phosphate production. The optimal medium compositions for the solubilization of insoluble phosphate by P. fluorescens RAF15 were 1.5% glucose, 0.005% urea, 0.3% $MgCl_2{\cdot}6H_2O$, 0.01% $MgSO_4{\cdot}7H_2O$, 0.01% $CaCl_2{\cdot}2H_2O$ and 0.01% NaCl, respectively. Optimal inoculum concentration was 2.0%(v/v). Maximum soluble phosphate production was obtained with 20-50 ml/250-ml flask and 200 rpm of shaking speed, respectively. The addition of EDTA decreased cell growth and soluble phosphate production.