• Title/Summary/Keyword: Insole

Search Result 186, Processing Time 0.023 seconds

A Study on Weight Transfer Sidehill Slopes during Goal Impact : Especially sidehill Slopes with ball above the feet (측면경사면에서의 목표 타격시 체중이동에 관한 연구 : 오르막경사를 중심으로)

  • Lee, Eui-Lin;Choi, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.43-53
    • /
    • 2006
  • Among several movements that occurred upon a slope, golf swing is the most typical one because environmental conditions dynamically vary with many kinds of slopes. Some studies on the golf swing were performed about a weight transfer on flatland, however, there couldn't be seen any study about the weight transfer on slope elsewhere. Therefore, the purpose of this study was to provide quantified data to objectively test the coaching words and keys about the weight transfer at sidehill slope during goal impact EspeciaIly sidehill Slopes with ball above the feet. Four highschool golfer, who have average handy 5, were recruited for this study. Plantar pressure distribution and cinematographic data were collected during golf swing in the conditions of flatland, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$sidehill slope simultaneously. The two data were used to synchronize the two data later. The plantar regions under the foot were divided into 8 regions according to the directly applied pressure pattern of the subject to insole sensor. The 8 foot regions were hullux, medial forefoot, central forefoot, lateral forefoot, medial midfoot, lateral midfoot, medial heel, and lateral heel. And the plantar pressure data was also divided into four movement address, phases-backswing. downswing, and follow-through phases according to the percentage shown to the visual information of film data. Based on the investigations on public golf books and experiences of golfers, it was hypothesized by the authors in the early of this study that the steeper slopes are, the more weight loads on left foot that positions at the higher place. When observing the results of plantar pressure and vertical force curves according to the sidehill slope conditions, the hypothesis could be accepted.

The Effect of Shoe Lift of the Paretic Limb on Gait Patterns in Hemiplegics (환측 신발 높이기가 편마비 환자의 보행 특성에 미치는 영향)

  • Yoon, Jung-Gyu;Park, Jeong-Mee;Kim, Jong-Man
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.83-96
    • /
    • 2002
  • The purpose of this study was to determine the effect of lift to the shoe of the affected limb on gait patterns in subjects with hemiplegia. The subjects of this study were 18 post-stroke hemiplegics. For the study, insole of the paretic side was lifted 10mm higher, and duration of static weight bearing, dynamic weight bearing and stance phase were measured from one cycle of the gait, before and after the lift application. For the measurement of carry-over effect of lift, we got data of those three items prior to and 3 weeks after lift application and 3 days after removal of the lift. Static weight bearing was significantly increased both just after and continuous application of lift for 3 weeks than before. Dynamic weight bearing was significantly decreased in heel contact and footflat phases only when just after application of the lift, without any change after 3 weeks application. In heel-off phase, dynamic weight bearing did not show any significant difference between before and just after application of lift whereas significantly decreased after 3 weeks application. Duration of stance phase was not changed among anytime of application. According to this study, lift applied to the shoe of the peretic limb was effective in inducing static weight bearing in the paretic limb, but did not significantly effect dynamic weight bearing on gait patterns. This study suggests that symmetry, induced by shoe lift applied to the paretic limb, could help correct abnormal posture that would be caused in standing and prevent development of abnormal muscle tone in subjects with hemiplegia caused by unilateral stroke.

  • PDF

Analysis of Foot Pressure according to the Work Postures on Fire Fighters (소방대원들의 작업자세에 따른 족저압력 분석)

  • Son, Sung Min;Roh, Hyo Lyun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.88-94
    • /
    • 2013
  • The purpose of this study is to find out the difference of foot pressure according to the firefighter's work postures for providing the basic information to prevent Musculoskeletal disorders. This study was conducted by 9 male firefighters. Work postures were selected for rescuee handling, fire hose and hydraulic rescue equipment work postures. These were divided into 3 position, "High", "Middle" and the postures of taking out and letting down hydraulic rescue equipment were analyzed as starting point and end point respectively. Foot Pressure was used to analyze contact area, peak pressure, and maximum force in terms of work postures, and compared between fire hose and hydraulic rescue equipment work postures. The results of foot pressure are as follows. According to the results of rescuee handling work postures, one person handling posture showed wide contact area and foot pressure showed the highest at right foot. Accoridng to the (High), (Middle), (Low) postures of fire hose, the results didn't show the difference among the contact area, peak pressure and maximum force. As the results of hydraulic rescue equipment work postures, (Low) postures showed the highest in terms of the right foot of contact area, peak pressure and maximum force and (High) postures showed the highest in left foot. The increase of foot pressure lead to be inconvenience of low extremity and muscle fatigue for maintaining postural control cause pain. Thus, it is necessary to design insole-equipped working shoe for reduce the impulse and effect of foot during the rescuee handling work which standing out as foot pressure.

A Study on a Algorithm of Gait Analysis and Step Count with Pressure Sensors (보행수 측정 및 보행패턴 분류 알고리즘)

  • Do, Ju-pyo;Choi, Dae-yeong;Kim, Dong-jun;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1810-1814
    • /
    • 2017
  • This paper develops an approach to the algorithm of Gait pattern Analysis and step measurement with Multi-Pressure Sensors. The process of gait consists of 8 steps including stance and swing phase. As 3 parts of foot is supporting most of human weight, multiple pressure sensors are attached on the parts of foot: forefoot, big toe, heel. As 3 parts of foot is supporting most of human weight, multiple pressure sensors are attached on the parts of foot: forefoot, big toe, heel. normal gait proceed from heel, forefoot and big toe over time. While normal gait proceeds, values of heel, forefoot and big toe can be changed over time. So Each values of pressure sensors over time could discriminate whether it is normal or abnormal gait. Measuring Device consists of non-inverting amplifiers and low pass filter. Through timetable of values, normal gait pattern can be analyzed, because of supported weight of foot. Also, the peak value of pressure can judge whether it is walking or running. While people are running, insole of shoes is floating in the air on moment. Using this algorithm, gait analysis and step count can be measured.

Gait Analysis According to the changes of the carrying type and weight of bag (가방의 휴대 형태와 무게 변화에 따른 보행 분석)

  • Kim, Chan-Kyu;Lee, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.199-205
    • /
    • 2013
  • The purpose of this study was to analyze the changes in gait according to four style of bag's carryied method and three different bag's weights. Twenty healthy adults participated in four conditions. The first condition, they wearing a bag on one side shoulder and walked. The second condition, they carried a bag sling across on shoulder and walked. The third condition, they carried a bag on a back using both shoulders and walked. The fourth condition, they hold a bag in their right hand and walked. During all four conditions participants wore a SmartStep insole in their right shoe and had a pressure control device strapped to their right ankle. Each participant walked 10 meters carrying a 2.5 kg, 5 kg and 7.5 kg bag under all four conditions. There were significantly differents in stance phase rate; swing phase rate and walking speed according to bag weight of 2.5 kg, 5 kg, 7.5 kg.

Slip-Related Changes in Plantar Pressure Distribution, and Parameters for Early Detection of Slip Events

  • Choi, Seungyoung;Cho, Hyungpil;Kang, Boram;Lee, Dong Hun;Kim, Mi Jung;Jang, Seong Ho
    • Annals of Rehabilitation Medicine
    • /
    • v.39 no.6
    • /
    • pp.897-904
    • /
    • 2015
  • Objective To investigate differences in plantar pressure distribution between a normal gait and unpredictable slip events to predict the initiation of the slipping process. Methods Eleven male participants were enrolled. Subjects walked onto a wooden tile, and two layers of oily vinyl sheet were placed on the expected spot of the 4th step to induce a slip. An insole pressure-measuring system was used to monitor plantar pressure distribution. This system measured plantar pressure in four regions (the toes, metatarsal head, arch, and heel) for three events: the step during normal gait; the recovered step, when the subject recovered from a slip; and the uncorrected, harmful slipped step. Four variables were analyzed: peak pressure (PP), contact time (CT), the pressure-time integral (PTI), and the instant of peak pressure (IPP). Results The plantar pressure pattern in the heel was unique, as compared with other parts of the sole. In the heel, PP, CT, and PTI values were high in slipped and recovered steps compared with normal steps. The IPP differed markedly among the three steps. The IPPs in the heel for the three events were, in descending order (from latest to earliest), slipped, recovered, and normal steps, whereas in the other regions the order was normal, recovered, and slipped steps. Finally, the metatarsal head-to-heel IPP ratios for the normal, recovered, and slipped steps were $6.1{\pm}2.9$, $3.1{\pm}3.0$, and $2.2{\pm}2.5$, respectively. Conclusion A distinctive plantar pressure pattern in the heel might be useful for early detection of a slip event to prevent slip-related injuries.

Development of Insole for AI-Based Diagnosis of Diabetic Foot Ulcers in IoT Environment (IoT 환경에서 AI 기반의 당뇨발 진단을 위한 깔창 개발)

  • Choi, Won Hoo;Chung, Tai Myoung;Park, Ji Ung;Lee, Seo Hu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.83-90
    • /
    • 2022
  • Diabetes is a common disease today, and there are also many cases of developing into serious complications called Diabetic Foot Ulcers(DFU). Diagnosis and prevention of DFU in advance is an important task, and this paper proposes the method. Based on existing studies introduced in the paper, it can be seen that foot pressure and temperature information are deeply correlated with DFU. Introduce the process and architecture of SmarTinsole, an IoT device that measures these indicators. Also, the paper describes the preprocessing process for AI-based diagnosis of DFU. Through the comparison of the measured pressure graph and the actual human step distribution, it presents the results that multiple information collected in real-time from SmarTinsole are more efficient and reliable than the previous study.

Effects of Robot-Assisted Arm Training on Muscle Activity of Arm and Weight Bearing in Stroke Patients (로봇-보조 팔 훈련이 뇌졸중 환자의 팔에 근활성도와 체중지지에 미치는 영향)

  • Yang, Dae-jung;Lee, Yong-seon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.71-80
    • /
    • 2022
  • Background: This study investigated the effect of robot-assisted arm training on muscle activity of arm and weight bearing in stroke patients. Methods: The study subjects were selected 20 stroke patients who met the selection criteria. 10 people in the robot-assisted arm training group and 10 people in the task-oriented arm training group were randomly assigned. The experimental group performed robot-assisted arm training, and the control group performed task-oriented arm training for 6 weeks, 5 days a week, 30 minutes a day. The measurement tools included surface electromyography and smart insole system. Data were analyzed using independent sample t-test and the paired sample t-test. Results: Comparing the muscle activity of arm within the group, the experimental group and the control group showed significant differences in muscle activity in the biceps brachii, triceps brachii, anterior deltoid, upper trapezius, middle trapezius, and lower trapezius. Comparing the muscle activity of arms between the groups, the experimental group showed significant difference in all muscle activity of arm compared to the control group. Comparing the weight bearing within the groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings and there were significant differences in anterior and posterior weight bearing. The control group showed significant difference only in the non-affected side weight bearing. Comparing the weight bearings between groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings compared to the control group. Conclusion: This study confirmed that robot-assisted arm training applied to stroke patients for 6 weeks significantly improved muscle activity of arm and weight bearing. Based on these results, it is considered that robot-assisted arm training can be a useful treatment in clinical practice to improve the kinematic variables in chronic stroke patients.

The Effects of Stair Climbing Using Wearable Robot Bot Fit's Resistance

  • Jang-hoon Shin;Hwang-Jae Lee;Dokwan Lee;Wan-hee Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.2
    • /
    • pp.205-212
    • /
    • 2024
  • Objective: The purpose of this study is to confirm the exercise effect when combining wearable exercise assist robot, Bot fit's resist mode (Samsung Electronics) and stair climbing. Design: Cross-section study Methods: Targeting 53 adults and seniors, foot pressure and muscle activity were measured when climbing 3-story stairs using foot pressure measurement equipment (W-insole Science System) and surface muscle activity measurement equipment (sEMG; FreeEMG, BTS Bioengineering, Italy) using Bot Fit's resist mode. All subjects were measured without wearing Bot Fit, and the data between the two conditions were compared and analyzed. Results: The front area(p<0.01) and middle area(p<0.05) foot pressures of adults significantly increased when wearing the Bot fit. Frontal area foot pressure significantly increased in elderly people with knee arthritis and obesity(p<0.05). The gastrocnemius activity in all subjects significantly decreased after wearing Bot Fit(p<0.01). In elderly people with knee arthritis, the muscle activity of the rectus femoris was significantly reduced(p<0.05)., and in obese elderly people, the muscle activity of the gastrocnemius muscle was significantly reduced(p<0.05). Conclusions: Based on the results of this study, it is possible to induce correct stair climbing posture when climbing stairs using Bot fit resistance mode. In particular, it is expected to be an effective exercise for strengthening muscle endurance by increasing the activity of the rectus femoris muscle.

Satisfaction Evaluation of Diabetic Foot Disease Measurement using AI-based Application (AI기반 에플리케이션을 활용한 당뇨병성 족부질환 측정의 만족도 평가)

  • Hyeun-Woo Choi;Hyo-jin Lee;Min-jeong Kim;Jong-Min Lee;Dong-hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.4
    • /
    • pp.327-334
    • /
    • 2024
  • The purpose of this study is to develop a customized foot disease analysis and management system for diabetic patients to prevent foot ulcers in diabetic foot disease patients. This system utilizes image analysis technology to measure not only foot pressure, but also ankle deformation, body balance, and foot wounds. Through various data, it is possible to accurately analyze the state of foot deformation, and based on this, the exact state of deformation of the foot of a patient with diabetic foot disease was identified and a customized insole was produced. This study was conducted to examine the satisfaction level of using an application that checks the status of diabetic foot disease wounds and to identify the degenerative status of diabetic foot disease patients and foot disease patients by wearing customized insoles and to survey the satisfaction of wearing insoles. As a result of the study, the knee angle measured for plantar pressure was -0.8 ± 1.3 degrees and ranged from a minimum of -2.4 degrees to a maximum of 1.1 degrees, and there was no significant difference in valgus knee between both lower extremities (p = 0.534). There was a significant difference in tibial angle between both lower extremities (p < 0.001). Ankle angle on the left side was 2.6 ± 2.0 degrees, ranging from a minimum of 0 degrees to a maximum of 6.3 degrees, and on the right, it was 4.5 ± 2.1 degrees, with a distribution of minimum 1.5 degrees to a maximum of 9.1 degrees. There was a significant difference in ankle angle between both lower extremities (p = 0.011). They responded that they felt an average of 4.3 points of satisfaction with the plantar pressure measurement application. Respondents responded that they felt an average of 3.9 points of satisfaction with the use of customized insoles.