• Title/Summary/Keyword: Insertion torque resonance frequency analysis

Search Result 12, Processing Time 0.029 seconds

In Vitro Study on the Initial Stability of Two Tapered Dental Implant Systems in Poor Bone Quality (연질 골에서 두 종류의 테이퍼 형태 임플란트의 초기 안정성에 관한 실험실적 연구)

  • Kim, Duck-Rae;Kim, Myung-Joo;Kwon, Ho-Beom;Lee, Seok-Hyung;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.391-401
    • /
    • 2009
  • The successful outcome of dental implants is mainly the result of intial implant stability following placement. The aim of this study was to investigate the effect of a self-tapping blades and implant design on initial stability of two tapered implant systems in poor bone quality. The two different implant systems included one with self-tapping blades and one without self-tapping blades. D4 bone model using Solid Rigid Polyurethane Form was used to simulate poor bone densities. The insertion torque during implant placement was recorded. Resonance frequency Analysis (RFA), measured as the implant stability quotient (ISQ), was assessed immediately after insertion. Finally, the implant-bone specimen was transferred to an Universal Testing Machine to measure the axial pull-out force. Insertion torque values and maximum pull-out torque value of the non self-tapping implants were significantly higher than those in the self-tapping group (P = 0.008). No statistically differences were noted between the two implant designs in RFA. Within the each implant system, no correlation among insertion torque, maximum pull-out torque and RFA value could be determined. Higher insertion torque of the non-self-tapping implants appeared to confirm higher clinical initial stability. In conclusion, implants without self-tapping blades have higher initial stability than implants with self-tapping blades in poor bone quality.

A STUDY ON THE CORRELATION BETWEEN IMPLANT STABILITY VALUES AND INITIAL INSERTION TORQUE

  • Lee Jong-Hyuk;Yang Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.314-324
    • /
    • 2006
  • Statement of problem. Osseointegration is important mechanism of dental implant but it is not easy to evaluate. Indirect measurement is non-invasive and clinically applicable but they need more study about correlation between indirect values and degree of osseointegration. Purpose. The aims of this study were to evaluate the coefficient of correlation between indirect measurement and direct measurement under different healing time, and assessment of effect of initial insertion torque to the implant stability. Material and Methods. 20 rabbits received 3 implants on each side of tibia. Three kinds of implants (machined surface implant, Sandblasted with Large grit and Acid etched implant, Resorbable Blast Media treated implant) were used. During the surgery implant insertion torque were measured with $Osseocare^{TM}$. After the 1, 4, 8, 12 weeks of healing time, animals were sacrificed and stability values (Implant Stability Quotient with $Osstell^{TM}$, removal torque with torque gauge) were measured. Results. The Bone quality of rabbit tibia was classified into 2 groups according to the insertion torque. Resonance frequency analysis (ISQ) and removal torque showed positive correlation until $4^{th}$ week (r=0.555, p=0.040). After $8^{th}$ week (r=0.011, p=0.970) the correlation became weak and it turned negative at $12^{th}$ week (r=-0.074, p=0.801). Insertion torque and ISQ showed changing correlation upon the healing time ($1^{st}$ week: r=0.301, p=0.033, $4^{th}$ week: r=-0.429, p=0.018, $8^{th}$ week: r=0.032, p=0.865, $12^{th}$ week: r=-0.398, p=0.029). Insertion torque and removal torque has positive correlation but it was not statistically significant ($1^{st}$ week: r=0.410, p=0.129, $4^{th}$ week: r=0.156, p=0.578, $8^{th}$ week: r=0.236, p=0.398, $12^{th}$ week: r=0.260, p=0.350). Conclusion. In this study, bone quality may affect the degree of osseointegration positively during healing time and correlation between ISQ and degree of osseointegration can be different according to the healing time and bone quality.

Non-submerged type implant stability analysis during initial healing period by resonance frequency analysis (Resonance frequency analysis를 이용한 non-submerged type 임플란트의 초기 안정성 분석)

  • Kim, Deug-Han;Pang, Eun-Kyoung;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.3
    • /
    • pp.339-348
    • /
    • 2009
  • Purpose: The purpose of the present study was to analyze the implant stability quotient(ISQ) values for Korean non-submerged type implant and determine the factors that affect implant stability. Methods: A total of 49 Korean non-submerged type implants were installed in 24 patients, and their stability was measured by resonance frequency analysis(RFA) at the time of surgery, and 1, 2, 3, 4, 8, 12 weeks postoperatively. The data for implant site, age, sex, implant length and diameter, graft performing, bone type, and insertion torque were analyzed. Results: The lowest mean stability measurement was at 3 weeks. There was significant difference between implant placement and 12 weeks. There was significant difference between implant placement and 12 weeks in diameters of 4.1 mm and 4.8 mm. Also, there were significant differences between diameters of 4.1 mm and 4.8 mm at implant placement and 12 weeks after surgery. This result suggests that the factor related to implant diameter may affect the level of implant stability. No statistically significant relationship was found between the resonance frequency analysis and the variables of maxilla/mandible, sex, anterior/posterior, implant length, age of patient, graft performing, bone type, insertion torque during initial healing period. Conclusions: These findings suggest that the factor related to implant diameter may affect the variance of implant stability, and ISQ value of implant was stable enough for proved stability level during initial healing period.

EFFECT OF IMPLANT DESIGNS ON INSERTION TORQUE AND IMPLANT STABILITY QUOTIENT (ISQ) VALUE

  • Piao Chun-Mei;Heo Seong-Joo;Koak Jai-Young;Kim Seong-Kyun;Han Chong-Hyun;Fang Xian-Hao
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.325-332
    • /
    • 2006
  • Statement of problem. Primary implant stability has long been identified as a prerequisite to achieve osseointegration. So the application of a simple, clinically applicable noninvasive test to assess implant stability and osseiointegratation are considered highly desirable. Purpose. The purpose of this study was to evaluate the ISQ value and the insertion torque of the 3 different implant system, then to evaluate whether there was a correlation between ISQ value and insertion torque; and to determine whether implant design has an influence on either insertion torque or ISQ value. Material and method. The experiment was composed of 3 groups: depending on the implant fixture design. Group1 was Branemark type parallel implant in $3.75{\times}7mm$. Group2 was Oneplant type straight implant in $4.3{\times}8.5mm$. Group3 was Oneplant type tapered implant in $4.3{\times}8.5mm$. Depending on the density of the bone, 2 types of bone were used in this experiment. Type I bone represented for cortical bone, type II bone represented for cancellous bone. With the insertion of the implant in type I and type II bone, the insertion torque was measured, then the ISQ value was evaluated, and then the correlation between insertion torque and ISQ value was analyzed Result and conclusion. Within the limitations of this study, the following conclusions were drawn. 1. Within the 3 different implants, the insertion torque value and ISQ value were higher in type I bone, when compared with type II bone.(p<0.05) 2. In type I and type II bone, Oneplant type tapered implant has the highest value in insertion torque.(p<0.05) 3. In type I and type II bone, there was no difference in ISQ values among the 3 types of implant. (p>0.05) 4. Significant linear correlation was found in $Br{\aa}nemark$ type parallel implant: $3.75{\times}7mm$ in type II bone.

Biomechanical evaluation of dental implants with different surfaces: Removal torque and resonance frequency analysis in rabbits

  • Koh, Jung-Woo;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2009
  • STATEMENT OF PROBLEM. Macroscopic and especially microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Dental implants with modified surfaces have shown stronger osseointegration than implants which are only turned (machined). Advanced surface modification techniques such as anodic oxidation and Ca-P application have been developed to achieve faster and stronger bonding between the host bone and the implant. PURPOSE. The purpose of this study was to investigate the effect of surface treatment of titanium dental implant on implant stability after insertion using the rabbit tibia model. MATERIAL AND METHODS. Three test groups were prepared: sandblasted, large-grit and acid-etched (SLA) implants, anodic oxidized implants, and anodized implants with Ca-P immersion. The turned implants served as control. Twenty rabbits received 80 implants in the tibia. Resonance frequencies were measured at the time of implant insertion, 2 weeks and 4 weeks of healing. Removal torque values (RTV) were measured 2 and 4 weeks after insertion. RESULTS. The implant stability quotient (ISQ) values of implants for resonance frequency analysis (RFA) increased significantly (P <. 05) during 2 weeks of healing period although there were no significant differences among the test and control groups (P >. 05). The test and control implants also showed significantly higher ISQ values during 4 weeks of healing period (P < .05). No significant differences, however, were found among all the groups. All the groups showed no significant differences in ISQ values between 2 and 4 weeks after implant insertion (P >. 05). The SLA, anodized and Ca-P immersed implants showed higher RTVs at 2 and 4 weeks of healing than the machined one (P < .05). However, there was no significant difference among the experimental groups. CONCLUSION. The surface-modified implants appear to provide superior implant stability to the turned one. Under the limitation of this study, however, we suggest that neither anodic oxidation nor Ca-P immersion techniques have any advantage over the conventional SLA technique with respect to implant stability.

Comparative Biomechanical Study of Self-tapping and Non Self-tapping Tapered Dental Implants in Artificially Simulated Quality 2 Bone

  • Baek, Yeon-Wha;Kim, Duck-Rae;Park, Ju-Hee;Lim, Young-Jun
    • Journal of Korean Dental Science
    • /
    • v.4 no.2
    • /
    • pp.52-58
    • /
    • 2011
  • Purpose: Modifications of implant design have been related to improving initial stability. The purpose of this study was to investigate their respective effect on initial stability between two tapered implant systems (self-tapping vs. non-self-tapping) in medium density bone using three different analytic methods. Materials and Methods: Self-tapping implant (GS III$^{(R)}$; Osstem Implant Co., Busan, Korea) and non-self-tapping implant (Replace Select$^{(R)}$; Nobel Biocare, G$\H{o}$teborg, Sweden) were investigated. In Solid rigid polyurethane blocks of artificially simulated Quality 2 bone, each of the 5 implants was inserted according to the manufacturer's instructions for medium-bone drilling protocol. Evaluation of initial stability was carried out by recording the maximum insertion torque (IT) and performing the resonance frequency analysis (RFA), and the pull-out test. Results: The IT and RFA values of self-tapping implant were significantly higher than those of non self-tapping implant (P=.009 and P=.047, respectively). In the pull-out values, no significant differences were found in implants between two groups (P=.117). Within each implant system, no statistically significant correlation was found among three different outcome variables. Conclusions: These findings suggest that design characteristics of implant geometry significantly influence the initial stability in medium bone density.

A comparison of bone bed preparation with laser and conventional drill on the relationship between implant stability quotient (ISQ) values and implant insertion variables

  • Lee, Su-Young;Piao, Chunmei;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee;Kim, Tae-Hyung;Kim, Myung-Joo;Kwon, Ho-Beom;Kim, Seong-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.148-153
    • /
    • 2010
  • PURPOSE. The aim of this study was to investigate a comparison of implant bone bed preparation with Er,Cr:YSGG laser and conventional drills on the relationship between implant stability quotient (ISQ) values and implant insertion variables. MATERIALS AND METHODS. Forty implants were inserted into two different types of pig rib bone. One group was prepared with conventional drills and a total of 20 implants were inserted into type I and type II bone. The other group was prepared with a Er,Cr:YSGG laser and a total of 20 implants were inserted into type I and type II bone. ISQ, maximum insertion torque, angular momentum, and insertion torque energy values were measured. RESULTS. The mean values for variables were significantly higher in type I bone than in type II bone (P < .01). In type I bone, the ISQ values in the drill group were significantly higher than in the laser group (P < .05). In type II bone, the ISQ values in the laser group were significantly higher than in the drill group (P < .01). In both type I and type II bone, the maximum insertion torque, total energy, and total angular momentum values between the drill and laser groups did not differ significantly (P ${\geq}$ .05). The ISQ values were correlated with maximum insertion torque (P < .01, r = .731), total energy (P < .01, r = .696), and angular momentum (P < .01, r = .696). CONCLUSION. Within the limitations of this study, the effects of bone bed preparation with Er,Cr:YSGG laser on the relationship between implant stability quotient (ISQ) values and implant insertion variables were comparable to those of drilling.

Comparison of implant stability measurements between a resonance frequency analysis device and a modified damping capacity analysis device: an in vitro study

  • Lee, Jungwon;Pyo, Se-Wook;Cho, Hyun-Jae;An, Jung-Sub;Lee, Jae-Hyun;Koo, Ki-Tae;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.1
    • /
    • pp.56-66
    • /
    • 2020
  • Purpose: A stability-measuring device that utilizes damping capacity analysis (DCA) has recently been introduced in the field of dental implantology. This study aimed to evaluate the sensitivity and reliability of this device by measuring the implant stability of ex vivo samples in comparison with a resonance frequency analysis (RFA) device. Methods: Six implant beds were prepared in porcine ribs using 3 different drilling protocols to simulate various implant stability conditions. Thirty-six pork ribs and 216 bone-level implants measuring 10 mm in height were used. The implant beds were prepared using 1 of the following 3 drilling protocols: 10-mm drilling depth with a 3.5-mm-diameter twist drill, 5-mm drilling depth with a 4.0-mm-diameter twist drill, and 10-mm drilling depth with a 4.0-mm-diameter twist drill. The first 108 implants were external-connection implants 4.0 mm in diameter, while the other 108 implants were internal-connection implants 4.3 mm in diameter. The peak insertion torque (PIT) during implant placement, the stability values obtained with DCA and RFA devices after implant placement, and the peak removal torque (PRT) during implant removal were measured. Results: The intraclass correlation coefficients (ICCs) of the implant stability quotient (ISQ) results obtained using the RFA device at the medial, distal, ventral, and dorsal points were 0.997, 0.994, 0.994, and 0.998, respectively. The ICCs of the implant stability test (IST) results obtained using the DCA device at the corresponding locations were 0.972, 0.975, 0.974, and 0.976, respectively. Logarithmic relationships between PIT and IST, PIT and ISQ, PRT and IST, and PRT and ISQ were observed. The mean absolute difference between the ISQ and IST values on a Bland-Altman plot was -6.76 (-25.05 to 11.53, P<0.05). Conclusions: Within the limits of ex vivo studies, measurements made using the RFA and DCA devices were found to be correlated under a variety of stability conditions.

Evaluation of the stability of sandblasted, large-grit, acid-etched implants with tapered straight body design (테이퍼드 직선형 SLA 임플란트의 안정성 평가)

  • Kim, Yong-Gun;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.80-88
    • /
    • 2018
  • Purpose: Implant surface modification and implant design are the principle targets for achieving successful primary stability. The aim of this study was to measure implant stability quotient (ISQ) values of sandblasted, large-grit, acid-etched (SLA) implants with tapered straight body design during the healing period, and to determine the various factors affecting implant stability. Materials and Methods: To measure implant stability, resonance frequency analysis (RFA) was performed in 26 patients (13 women and 13 men) with 44 SLA implants with tapered straight body design. Implant stability (ISQ values) was evaluated at baseline and healing abutment connection (12 weeks), and the correlations between RFA and insertion torque (IT), bone quality, and jawbone were determined. Results: The mean ISQ value of the implants was $69.4{\pm}10.2$ at the time of implant placement (baseline) and $81.4{\pm}6.9$ at the time of healing abutment connection (P < 0.05). Significant differences were found between RFA and bone quality and between RFA and jawbone (P < 0.05). No significant differences were found between RFA and IT, insertion area, fixture diameter, and implant length (P > 0.05). Conclusion: ISQ values of SLA implants with tapered straight body design were high at baseline and healing abutment connection. It was concluded that SLA implants with tapered straight body design show improved primary and secondary stability, and that immediate or early loading may be applicable.

A resonance frequency analysis of sandblasted and acid-etched implants with different diameters: a prospective clinical study during the initial healing period

  • Kim, Hyun-Joo;Kim, Yeun-Kang;Joo, Ji-Young;Lee, Ju-Youn
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.2
    • /
    • pp.106-115
    • /
    • 2017
  • Purpose: The possibility of immediate or early loading has become popular in implant dentistry. A prerequisite for the immediate or early loading of an implant prosthesis is the achievement of initial stability in the implant. Moreover, in response to clinicians' interest in verifying clinical stability to determine the optimal time point for functional loading, a non-invasive method to assess implant stability has been developed on the basis of resonance frequency analysis (RFA). The primary objective of this study was to monitor the stability of sandblasted, large-grit, and acid-etched (SLA) implants with different diameters during the early phases of healing by RFA. The secondary objective was to evaluate how the initial stability of implants varied depending on different surface modifications and other contributing factors. Methods: Thirty-five implants (25 SLA implants and 10 resorbable blasting media [RBM] implants) placed in 20 subjects were included. To measure implant stability, RFA was performed at baseline and at 1, 2, 3, 4, 6, and 10 weeks after surgery. Results: The longitudinal changes in the implant stability quotient (ISQ) values were similar for the SLA implants with different diameters and for the RBM implants. During the initial healing period, the ISQ decreased after installation and reached its lowest values at 1 week and 2 weeks, respectively. The mean ISQ values in the SLA implants were significantly higher in ${\varnothing}5.0mm$ implants than in ${\varnothing}4.0mm$ implants. Men showed a higher ISQ than women. Mandibular sites showed a higher ISQ than maxillary sites. Conclusions: All implants used in this study are suitable for immediate or early loading under appropriate indications. A wider diameter and SLA surface treatment of implants could improve the stability, if the implant is fixed with at least 30 Ncm of insertion torque.