• 제목/요약/키워드: Insert type milling cutter

검색결과 5건 처리시간 0.024초

인서트형 밀링커터의 복합5축가공 기술개발에 관한 연구 (Study on the development of multi-tasking 5-axis machining for insert type milling cutter)

  • 황종대;정윤교
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.21-26
    • /
    • 2004
  • This research presents a modeling and a manufacturing method of insert type milling cutters such as face cutter, flat endmill and ball endmill. The methods introduced in this paper adopts the multi-tasking 5-axis machining that is increasing machining accuracy of holder and position accuracy of bolting points. So this can be used in the basic document of the total package program that involves modeling and manufacturing module in various insert cutters.

  • PDF

밀링용 칩 브레이커 인서트의 절삭력 예측 (Prediction of Cutting Forces for the Chip Breaker Insert in Milling)

  • 김국원;이우영;신효철
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2664-2675
    • /
    • 1993
  • In this paper, the effects of chip breaker configuration on cutting forces for various cutting conditions are investigated and a method for predicting cutting forces effectively for chip breaker insert in milling is described. Based on the shear plane model and the relevant equations already existing for the relation among the parameters, the method makes use of the analytic geometric approach considering the configuration of cutting too by a 3-dimensional coordinate transformation matrix. The groove type chip breaker insert is modeled to be a double rake insert, represented by the first radial rake angle, the second radial rake angle and the length of land, and the program analyzing the cutting forces is developed. The program capability is verified by comparing the results with the experimental ones for a single cutter; and in case of primary cutting forces, the results of simulation and experiments agree very well showing 2%~16.7% difference within the feed rate range investigated.

인덱서블 엔드밀링 공정을 위한 향상된 절삭력 모델의 개발 (Development of Improved Cutting Force Model for Indexable End Milling Process.)

  • 김성준;이한울;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.237-240
    • /
    • 2004
  • Indexable end mills, which consist of inserts and cutter body, have been widely used in roughing of parts in the mold industry. The geometry and distribution of inserts on cutter body are determined by application. This paper proposes analytical cutting force model for indexable flat end-milling process. Developed cutting force model uses the cutting-condition-independent cutting force coefficients and considers runout, cutter deflection and size effect for the accurate cutting force prediction. Unlike solid type endmill, the tool geometry of indexable endmill is variable according to the axial position due to the geometry and distribution of inserts on the cutter body. Thus, adaptive algorithm that calculates tool geometry data at arbitrary axial position was developed. Then number of flute, angular position of flute, and uncutchip thickness are calculated. Finally, presented model was validated through some experiments with aluminum workpiece.

  • PDF

Al2024의 고속 정면밀링 가공에서 표면 거칠기에 관한 연구 (A Study on Surface roughness in High speed face milling machining of Al2024)

  • 장성민
    • 한국산학기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.603-608
    • /
    • 2014
  • 항공기와 자동차 부품과 관련된 많은 제조업에서, 낮은 비중과 높은 강도에서 뛰어난 알루미늄 합금(Al2024)은 효과적으로 사용되었다. 가공소재의 표면거칠기 품위를 위한 정면밀링 가공기술은 이들 분야에서 적용되어 왔다. 챔퍼된 드로우 어웨이 타입의 인서트를 갖는 정면밀링 가공은 단지 이론적으로 완전한 평면을 생산할 수 있다. 그러나 그것은 절삭온도, 소성변형, 동적효과 등으로 인하여 불가능하다. 본 논문에서 실험적 연구는 검증된 고속가공이 가능한 정면밀링커터 바디를 사용하여 Al2024의 고속가공 후 표면거칠기를 개선하기 위하여 수행되었다.

최적 절삭 조건을 고려한 절삭공구 선정 프로그램 개발 (Development of Tool and Optimal Cutting Condition Selection Program)

  • 신동오;김영진;고성림
    • 대한산업공학회지
    • /
    • 제26권2호
    • /
    • pp.165-170
    • /
    • 2000
  • In order to perform a successful material cutting process, the operators are to select the suitable machining tools and cutting conditions for the cutting environment. Up to now, this has been a complicated procedure done by the data in the tool manufacturers' paper catalog and the operator's experiencial knowledge, so called heuristics. This research is motivated by the fact that using computer techniques in processing vast amount of data and information, the operator can determine the tool and cutting condition easily. In the developed program, the selection of milling cutter, insert, and components are combined to provide optimal cutting speed, depth of cut, feed rate, rpm, and power. This program also provides the selection routine for end mill, drilling, turning, and grinding where the suitable tools are selected by workpiece, holder type, cut type, and insert shape.

  • PDF