• Title/Summary/Keyword: Insect rearing

Search Result 81, Processing Time 0.015 seconds

Assessment of Physiological Activity of Entomopathogenic Fungi with Insecticidal Activity Against Locusts (풀무치에 대하여 살충활성을 보유한 곤충병원성 진균의 생리활성 평가)

  • Lee, Mi Rong;Kim, Jong Cheol;Lee, Se Jin;Kim, Sihyeon;Lee, Seok Ju;Park, So Eun;Lee, Wang Hyu;Kim, Jae Su
    • Korean journal of applied entomology
    • /
    • v.56 no.3
    • /
    • pp.301-308
    • /
    • 2017
  • Locusts, Locusta migratoria (Orthoptera: Acrididae) are periodical unpredictable agricultural pests worldwide and cause serious damage to crop production; however, little consideration has been given to the management of this pest. Herein, we constructed a locust-pathogenic fungal library and confirmed that some fungi could be used as resources for locust management. First, the entomopathogenic fungi were collected from sampled soils using a Tenebrio molitor-based baiting system. For the locust assay, a locust colony was obtained from the National Institute of Agricultural Science and Technology. A total of 34 entomopathogenic fungal granules, which were produced by solid cultures, were placed in the plastic insect-rearing boxes (2 g/box) and nymphs of locust were contained in the box. In 3-7 days, mycosis was observed on the membranous cuticles of the head, abdomen, and legs of locusts. In particular, Metarhizium anisopliae, M. lepidiotae, and Clonostachys rogersoniana exhibited high virulence against the locust. Given that the 34 isolates could be used in field applications, their conidial production and stability (thermotolerance) were further characterized. In the thermotolerance assay, Paecilomyces and Purpureocillium isolates had higher thermotolerance than the other isolates. Most of the fungal isolates produced ca. >$1{\times}10^8conidia/g$ on millet grain medium. In a greenhouse trial, the granular application of M. anisopliae isolate on the soil surface resulted in 85.7% control efficacy. This work suggests that entomopathogenic fungi in a granular form can be effectively used to control the migratory locust.