• Title/Summary/Keyword: Insect pathogenic fungus

Search Result 17, Processing Time 0.025 seconds

Selection of Reference Genes for Real-time Quantitative PCR Normalization in the Process of Gaeumannomyces graminis var. tritici Infecting Wheat

  • Xie, Li-hua;Quan, Xin;Zhang, Jie;Yang, Yan-yan;Sun, Run-hong;Xia, Ming-cong;Xue, Bao-guo;Wu, Chao;Han, Xiao-yun;Xue, Ya-nan;Yang, Li-rong
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.11-18
    • /
    • 2019
  • Gaeumannomyces graminis var. tritici is a soil borne pathogenic fungus associated with wheat roots. The accurate quantification of gene expression during the process of infection might be helpful to understand the pathogenic molecular mechanism. However, this method requires suitable reference genes for transcript normalization. In this study, nine candidate reference genes were chosen, and the specificity of the primers were investigated by melting curves of PCR products. The expression stability of these nine candidates was determined with three programs-geNorm, Norm Finder, and Best Keeper. $TUB{\beta}$ was identified as the most stable reference gene. Furthermore, the exopolygalacturonase gene (ExoPG) was selected to verify the reliability of $TUB{\beta}$ expression. The expression profile of ExoPG assessed using $TUB{\beta}$ agreed with the results of digital gene expression analysis by RNA-Seq. This study is the first systematic exploration of the optimal reference genes in the infection process of Gaeumannomyces graminis var. tritici.

Antimicrobial Active Substances from Entomopathogenic Fungi (Various Applications of Entomopathogenic Fungi)

  • Shin, Tae Young;Woo, Soo Dong;Kim, Jeong Jun
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.13-13
    • /
    • 2016
  • Insects constitute the largest and most diverse group of animals in the world. They also serve as the hosts or nutrient sources for an immense assemblage of pathogens, parasites, and predators. More than 700 fungal species from 100 genera have adopted an entomopathogenic lifestyle. Although entomopathogenic fungi were studied as only biocontrol agents against a variety of pests in various countries, it has been recently focused their additional roles in nature. They are antagonists to/against plant pathogens, endophytes, and possibly even plant growth promoting agents. The potential antimicrobial effect against fungal plant pathogens by an isolate of entomopathogenic fungi including Beauveria bassiana, Lecanicillium spp., and Isaria fumosorosea have been reported since late 1990s, but wasn't reported pathogenicity of the isolate against pests. Later, a Canadian Lecanicillium sp. isolate and L. longisporium isolated from Vertalec$^{(R)}$ showed simultaneous control effect against both aphid and cucumber powder mildew. Therefore, the antimicrobial activities of 342 fungi isolates collected from various regions and conditions in Korea were evaluated against plant pathogenic fungus Botrytis cinerea using dual culture technique on agar plate. As a result, 186 isolates (54.4%) shown the antifungal activity against B. cinerea. The culture filtrates of selected fungi completely suppressed the growth of the microorganisms, indicating that suppression was due to the presence of antimicrobial substances in the culture filtrate. Mode of action of these fungi against insect involves the attachment of conidia to the insect cuticle, followed by germination, cuticle penetration, and internal dissemination throughout the insect. During infection process, secreted enzymes, proteinous toxins, and/or secondary metabolites secreted by entomopathogenic fungi can be used to overcome the host immune system, modify host behavior, and defend host resources. Recently, secondary metabolites isolated from entomopathogenic fungi have been reported as potential bioactive substances. Generally, most of bioactive substances produced by entomopathogenic fungi have reported low molecular weight (lower than 1,000 g/mol) as peptide and, in contrast the high molecular weight fungal bioactive substances are rare. Most substances based on entomopathogenic fungi were shown antimicrobial activity with narrow control ranges. In our study we analyzed the antimicrobial substances having antagonistic effects to B. cinerea. Antimicrobial substances in our fungal culture filtrates showed high thermostability, high stability to proteolytic enzymes, and hydrophilicity and their molecular weights were differed from substance. In conclusion, entomopathogenic fungi showed pathogenicity against insect pests and culture filtrate of the fungi also shown to antimicrobial activity. In the future, we can use the entomopathogenic fungi and its secondary metabolites to control both insect pest control and plant pathogenic fungi simultaneously.

  • PDF

A Study on the Investigation and Application of Microbial Pathogens of Major Insect Pests of Forest in Korea (중요산림해충의 병원미생물 개발에 관한 연구)

  • Park Chang-Suk;Cho Yong Sup
    • Korean journal of applied entomology
    • /
    • v.18 no.4 s.41
    • /
    • pp.161-167
    • /
    • 1979
  • The study has been carried to investigate a possibility to control several major insect pest of forest by microbial pathogens existing in nature as one of the biological control measure. Microorganisms including polyhedral virus isolated from diseased fall webworm were total of 4 kinds pathogenic microbes among these 4 kinds were polyhedral virus and Bacillus .species. Control effect of these two pathogens appeared to be $70.6\%$ and $49.5\%$, respectively, when they were compared with those of control plot that was $27.8\%$. Each one of bacterium species and fungus species were isolated from diseased Japanese alder leaf beetle. Pathogenisity to the healthy beetle was recognized by the fungus species, while the bacterium showed none of pathogenisity. The fungus was identified as Beauveria sp. and its effect on the beetle control was $96.2\%$ while untreated plot showed $49.2\%$ of dead beetles in the same period. Fifteen species of microbes were isolated from diseased larvae of pine gall midge. Six species out of 15 showed certain level of insecticidal effect to the larvae of the insects. The highest efficiency was showed by a fungus species, Fusarium sp. and was followed by Bacillus SP. I, Spicaria sp. pathogens isolated from larvae of pine gall midge did not affected to both of Japanese alder leaf beetles and fall webworms in any means.

  • PDF

Fine Structure of the Mouthparts in the Ambrosia Beetle Platypus koryoensis(Coleoptera: Curculionidae: Platypodinae)

  • Moon, Myung-Jin;Park, Jong-Gu;Kim, Kyung-Hee
    • Animal cells and systems
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 2008
  • Recently, Platypus koryoensis has been reported as a major pest of oak trees in Korea which can introduce the pathogenic fungus(Raffaelea sp.) by making galleries into the heartwood of the tree. As the beetle has developed its effective drilling mouthpart enough to make tunnels, we have analyzed the fine structural aspects of the mouthpart using the field emission scanning electron microscopy(FESEM) to reveal its mechano-dynamic characteristics. The mouthparts of this ambrosia beetle which consist of a labrum, a pair of mandibles, a pair of maxillae and the labium exhibit typical morphology of mycophagous coleopteran beetles and have those characteristics of chewing mouthparts that can excavate galleries in the hardwood. Both of maxillary and labial palpi have the functions of direct the food to the mouth and hold it while the mandibles chew the food. The distal ends of these palpi are flattened and have shovel-like setae. Females have larger maxillary palpi and a larger gular region than males in general.

Isolation and identification of insect pathogenic fungus from silkworms with suspected white muscardine disease

  • Seul Ki Park;Chan Young Jeong;Hyeok Gyu Kwon;Ji Hae Lee;Sang Kuk Kang;Seong-Wan Kim;Seong-Ryul Kim;Jong Woo Park
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.42-47
    • /
    • 2024
  • The value of silkworms as functional health food materials has increased, as has the interest in its disease control for stable production, and in the economic value of entomopathogenic microorganisms. In this study, we isolated and identified disease-causing fungi from white muscardine silkworms, and confirmed whether this strain could produce white muscardine silkworms. For the analysis of the cause of white muscardine disease in the infected silkworms, the fungi and prokaryotes causing the disease were identified, isolated, and identified using metagenome analysis. Metagenomic analysis detected a large amount of the fungus Metarhizium rileyi in silkworms, and a large amount of the bacterium Enterococcus mundtii, which was presumed to be the causative agent of the disease. For accurate identification of the fungi, these were purified by culture medium, and sequencing and phylogenetic tree analyses were performed using an internal transcribed spacer. As a result, M. rileyi, Cladosporium cladosporioides, and C. tenuissimum were identified. In general, M. rileyi is known to form green conidia, but in this study, white-yellow conidia were formed, indicating that the exact causative agent of the fungal disease cannot be estimated by diagnosing the symptoms. Thus, a diagnostic method is necessary for the continuously collection of required pathogens, and identifying their morphological and genetic characteristics.

A Technique for the Prevention of Greenhouse Whitefly (Trialeurodes vaporariorum) Using the Entomopathogenic Fungus Beauveria bassiana M130

  • Kim, Chang-Su;Lee, Jung-Bok;Kim, Beam-Soo;Nam, Young-Ho;Shin, Kee-Sun;Kim, Jin-Won;Kim, Jang-Eok;Kwon, Gi-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The possibility of using hyphomycete fungi as suitable biocontrol agents against greenhouse whitefly has led to the isolation of various insect pathogenic fungi. Among them is Beauveria bassiana, one of the most studied entomopathogenic fungi. The objective of this study was to use B. bassiana M130 as an insecticidal agent against the greenhouse whitefly. M130 isolated from infected insects is known to be a biocontrol agent against greenhouse whitefly. Phylogenetic classification of M130 was determined according to its morphological features and 18S rRNA sequence analysis. M130 was identified as B. bassiana M130 and showed chitinase (342.28 units/ml) and protease (461.70 units/ml) activities, which were involved in the invasion of the host through the outer cuticle layer, thus killing them. The insecticidal activity was 55.2% in petri-dish test, 84.6% in pot test, and 45.3% in field test. The results of this study indicate that B. bassiana has potential as a biological agent for the control of greenhouse whitefly to replace chemical pesticides.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.