• 제목/요약/키워드: Insect Search Systems

Search Result 3, Processing Time 0.016 seconds

User Satisfaction Analysis on Similarity-based Inference Insect Search Method in u-Learning Insect Observation using Smart Phone (스마트폰을 이용한 유러닝 곤충관찰학습에 있어서 유사곤충 추론검색기법의 사용자 만족도 분석)

  • Jun, Eung Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.203-213
    • /
    • 2014
  • In this study, we proposed a new model with ISOIA (Insect Search by Observation based on Insect Appearance) method based on observation by insect appearance to improve user satisfaction, and compared it with the ISBC and ISOBC methods. In order to test these three insect search systems with AHP method, we derived three evaluation criteria for user satisfaction and three sub-evaluation criteria by evaluation criterion. In the ecological environment, non-experts need insect search systems to identify insect species and to get u-Learning contents related to the insects. To assist the public the non-experts, ISBC (Insect Search by Biological Classification) method based on biological classification to search insects and ISOBC (Insect Search by Observation based on Biological Classification) method based on the inference that identifies the observed insect through observation according to biological classification have been provided. In the test results, we found the order of priorities was ISOIA, ISOBC, and ISBC. It shows that the ISOIA system proposed in this study is superior in usage and quality compared with the previous insect search systems.

Design and Implementation of Produce Farming Field-Oriented Smart Pest Information Retrieval System based on Mobile for u-Farm (u-Farm을 위한 모바일 기반의 농작물 재배 현장 중심형 스마트 병해충 정보검색 시스템 설계 및 구현)

  • Kang, Ju-Hee;Jung, Se-Hoon;Nor, Sun-Sik;So, Won-Ho;Sim, Chun-Bo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.10
    • /
    • pp.1145-1156
    • /
    • 2015
  • There is a shortage of mobile application systems readily applicable to the field of crop cultivation in relation to diseases and insect pests directly connected to the quality of crops. Most of system have been devoted to diseases and insect pests that would offer full predictions and basic information about diseases and insect pests currently. But for lack of the instant diagnostic functions seriously and the field of crop cultivation, we design and implement a crop cultivation field-oriented smart diseases and insect pests information retrieval system based on mobile for u-Farm. The proposed system had such advantages as providing information about diseases and insect pests in the field of crop cultivation and allowing the users to check the information with their smart-phones real-time based on the Lucene, a search library useful for the specialized analysis of images, and JSON data structure. And it was designed based on object-oriented modeling to increase its expandability and reusability. It was capable of search based on such image characteristic information as colors as well as the meta-information of crops and meta-information-based texts. The system was full of great merits including the implementation of u-Farm, the real-time check, and management of crop yields and diseases and insect pests by both the farmers and cultivation field managers.

A Detailed Review on Recognition of Plant Disease Using Intelligent Image Retrieval Techniques

  • Gulbir Singh;Kuldeep Kumar Yogi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.77-90
    • /
    • 2023
  • Today, crops face many characteristics/diseases. Insect damage is one of the main characteristics/diseases. Insecticides are not always effective because they can be toxic to some birds. It will also disrupt the natural food chain for animals. A common practice of plant scientists is to visually assess plant damage (leaves, stems) due to disease based on the percentage of disease. Plants suffer from various diseases at any stage of their development. For farmers and agricultural professionals, disease management is a critical issue that requires immediate attention. It requires urgent diagnosis and preventive measures to maintain quality and minimize losses. Many researchers have provided plant disease detection techniques to support rapid disease diagnosis. In this review paper, we mainly focus on artificial intelligence (AI) technology, image processing technology (IP), deep learning technology (DL), vector machine (SVM) technology, the network Convergent neuronal (CNN) content Detailed description of the identification of different types of diseases in tomato and potato plants based on image retrieval technology (CBIR). It also includes the various types of diseases that typically exist in tomato and potato. Content-based Image Retrieval (CBIR) technologies should be used as a supplementary tool to enhance search accuracy by encouraging you to access collections of extra knowledge so that it can be useful. CBIR systems mainly use colour, form, and texture as core features, such that they work on the first level of the lowest level. This is the most sophisticated methods used to diagnose diseases of tomato plants.