• Title/Summary/Keyword: Inrush Current

Search Result 172, Processing Time 0.016 seconds

A Study on the Utilization and Control Method of Hybrid Switching Tap Based Automatic Voltage Regulator on Smart Grid (스마트그리드의 탭 전환 자동 전압 조정기의 다중 스위칭 제어 방법 및 활용 방안에 관한 연구)

  • Park, Gwang-Yun;Kim, Jung-Ryul;Kim, Byung-Gi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.31-39
    • /
    • 2012
  • In this paper, we propose a microprocessor-based automatic voltage regulator(AVR) to reduce consumers' electric energy consumption and to help controlling peak demanding power. Hybrid Switching Automatic Voltage Regulator (HS-AVR) consist of a toroidal core, several tap control switches, display and command control parts. The coil forms an autotransformer which has a serial main winding and four parallel auxiliary windings. It controls the output voltage by changing the combination of the coils and the switches. Relays are adopted as the link switches of the coils to minimize the loss. To make connecting and disconnecting time accurate, relays of the circuit have parallel TRIACs. A software phase locked loop(PLL) has been used to synchronize the timings of the switches to the voltage waveform. The software PLL informs the input voltage zero-crossing and positive/negative peak timing. The traditional voltage transformers and AVRs have a disadvantage of having a large mandatory capacity to accommodate maximum inrush current to avoid the switch contact damage. But we propose a suitable AVR for every purpose in smart grid with reduced size and increased efficiency.

Modeling and Strategic Startup Scheme for Large-Scaled Induction Motors (대용량 유도기 기동 특성 모델링 및 전략적 기동 방법에 관한 연구)

  • Jung, Won-Wook;Shin, Dong-Yeol;Lee, Hak-Ju;Yoon, Gi-Gab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.748-757
    • /
    • 2007
  • This paper is intended to solve the technical problem that fails in large-capacity induction motor starting due to serious voltage drop during starting period. One induction motor that is established already can reach in steady-state using reactor starting method but the voltage magnitude of PCC (point of common coupling) has dropped down a little. When the same capacity induction motor is installed additionally in the PCC, where the existing induction motor is operating, voltage drop becomes more serious by starting of additional induction motor. As a result, the additional induction motor fails in starting. Therefore, voltage compensation method is proposed so that all of two induction motors can be started completely. First, modeling technique is described in order to implement starting characteristics of large induction motor. And then, this paper proposes strategic starting scheme by proper voltage compensation that use no-load transformer tap control (NLTC) and step voltage regulator (SVR) for starting of two large induction motors successfully and improving the feeding network voltage profile during the starting period. The induction motor discussed in this paper is the pumped induction motor of 2500kVA capacity that is operating by KOWACO (Korea Water Resources Corporation). Modeling and simulation is conducted using PSCAD/EMTDC software.

  • PDF