• Title/Summary/Keyword: Inorganic nitrogen ($NO_3-N$, $NH_4-N$)

Search Result 85, Processing Time 0.031 seconds

Changes in Nitrogen Mineralization as Affected by Soil Temperature and Moisture

  • Wang, Xin-Lei;Park, Sang-Hyun;Lee, Bok-Rye;Jeong, Kwang-Hwa;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.196-201
    • /
    • 2018
  • Soil is the main nitrogen (N) provider for plants but N in soil is not all available to advanced plants. Mineralization is a critical biological process for transferring organic N to inorganic N that can be used by plants directly. To investigate the effect of different levels of soil temperature and water content to soil mineralization, a field experiment was established on three different sites (A, B and C). We measured soil temperature, moisture and electrical conductivity once daily after swine slurry application. Average soil moisture and temperature in site A is the highest among three sites (40.9% and $9.7^{\circ}C$, respectively). Following is in site C (37.3% and $9.6^{\circ}C$) and the lowest is in site B (28.0% and $9.0^{\circ}C$). Ammonium N (NH4+-N) and nitrate N (NO3--N) were determined on the first and fifth day after treatment. Compared with site B and C, site A always had the highest soil total N content (1.54 g N kg-1 on day one; 1.22 g N kg-1 on day five) and highest NO3-- N content (93.18 mg N kg-1 on day one; 16.22 mg N kg-1 on day five) and a significant decrease on day five. Content of NH4+-N in site B and C reduced while in site A, it increased by 6.7%. Results revealed that net N mineralization positively correlated with soil temperature (P<0.5, $r=0.675^*$) and moisture (P<0.01, $r=0.770^{**}$), suggesting that to some extent, higher soil moisture and temperature contribute more to inorganic N that can be used by plants.

Changes of water Quality During the Seed Production Period of Dark-banded Rockfish Sebastes inermis in Large Scale Tanks (대형 수조에서 볼락 종묘 생산에 따른 수질 환경의 변화)

  • Oh, Sung-Yong;Noh, Choong-Hwan
    • Journal of Aquaculture
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2006
  • An experiment was carried out to investigate changing of water quality during the seed production of dark-banded rockfish Sebastes inermis in large scale tanks. Ten broodstock of dark-banded rockfish were held in three circular tanks (diameter 6.5 m; depth 2 m; water volume 50 ton) each (stocking density $0.061kg/m^3$). During the experiment the temperature ranged from 14.2 to $16.1^{\circ}C$. The fingerlings were 134 with rotifers only during 1 to 9 days after parturition, rotifers with Artemia nauplii during 10 to 20 days after parturition, Artemia nauplii only during 21 to 35 days after parturition, Artemia nauplii with commercial diet during 36 to 80 days after parturition and commercial diet only during 81 to 85 days after parturition. Water quality (dissolved oxygen, pH, $NH_4^+-N,\;NO_2^--N,\;NO_3^--N\;and\;PO_4^{3-}-P$) in rearing tanks measured every 5 days in long term monitoring investigation or every 2 hours in diurnal monitoring investigation. In 85 days after parturition, the body weight of fish grew up to 0.88 f and specific growth rate was 8.0%/day in body weight. In long term monitoring investigation, with the increase of the amount of supplied commercial diet, the concentration of dissolved oxygen (DO) and pH decreased, but the concentration of $NH_4^+-N\;(4.5\;to\;76.3{\mu}M),\;NO_2^--N\;(0.02\;to\;0.06{\mu}M),\;NO_3^--N\;(3.0\;to\;5.9{\mu}M)$, and $PO_4^{3-}-P\;(0.41\;to\;0.59{\mu}M)$ increased. In the diurnal monitoring investigation, the concentration of $NH_4^+-N$ showed great fluctuation and ranged from 3.0 to $9.1{\mu}M$ when fed rotifers, 16.3 to $45.8{\mu}M$ when fed Artemia nauplii and 36.5 to $120.1{\mu}M$ when fed commercial diet. After daily feeding with each of feed, the amount of dissolved inorganic nitrogen (DIN) and phosphorus (P) wastage were 7.0 g and 0.7 g when fed rotifers, 24.7 g and 0.7 g when fed Artemia nauplii and 140.9 g and 2.2 g when 134 commercial diet. The amount of DIN and phosphorous wastage during 134 commercial diet was significantly higher than that of fed rotifer and Artemia nauplii (P<0.05). Results will provide valuable information far water quality management and culture of dark-banded rockfish in commercial seed production systems.

Evaluating Limiting Nutrients through Long-term Data Analyses and Bioassay Experiments in Cheonsu Bay and Taean Sea (장기자료 분석과 생물검정실험을 이용한 천수만과 태안해역의 제한영양염 평가)

  • Kim, Jin Hyun;Jeong, Won Ok;Shin, Yongsik;Jeong, Byungkwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.459-468
    • /
    • 2022
  • Long-term data analyses and bioassay experiments were conducted to assess limiting nutrients in Cheonsu Bay and Taean sea. First, long-term nutrient data (2004-2016) provided by the National Water Quality Monitoring Network were used to assess potential limiting nutrients. Analysis of the long-term data showed that the dissolved inorganic nitrogen/dissolved inorganic phosphate (DIN/DIP) ratio was mostly below 16, with N limitation being dominant. A subsequent analysis using the concentration ratios of N, P, and Si showed that N limitation was dominant during summer and autumn but that Si limitation occasionally occurred during winter and spring in relatively limited areas. However, the dominant limiting nutrient was not determined. The nutrient analysis of the field water collected during the bioassay experiment showed that DIN/DIP revealed P limitation at all stations in March and May, whereas N limitation was dominant in July and October. In the analysis using the concentration ratios of N, P, and Si, P and Si limitation appeared in March and May, but there were points with no dominant limiting nutrient. However, N limitation was dominant in July and October. In the bioassay experiment for assessment of the actual limiting nutrient, the results showed no specific limiting nutrient in March, whereas NH4+ and NO3- showed responses in May, July, and October, which confirmed that N was a substantial limiting nutrient directly involved in phytoplankton growth during this period.

Distribution of Inorganic N from Fertigated and Broadcast-applied 15N-Urea along Drip Irrigation Domain (점적관수시 관비와 표면시비된 중질소 표지요소의 행동비교)

  • Yoo, Sun-Ho;Jung, Kang-Ho;Ro, Hee-Myong;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.292-301
    • /
    • 2001
  • The objectives of this study were to measure the changes in soil moisture regimes and the distribution patterns of inorganic N derived from the fertigated $^{15}N$-labeled urea, and compare them with the results obtained from broadcast-applied soil under the same drip irrigation domain. In fertigated soil, a $^{15}N$-labeled urea solution of $117mg\;N\;L^{-1}$ was applied by surface drip irrigation for 4 weeks. In broadcast-applied soil, no the other hand, 4 g of $^{15}N$-labeled urea(1.87 g N) mixed thoroughly with 5 kg of soil was placed on the surface of packed soil. Soil water status was controlled by drip irrigation scheduled at soil matric potential of -50 kPa. A calibrated time-domain reflectometry probe was installed in the soil vertically 15 cm apart from a drip emitter to control drip irrigation. About 60% of urea-derived inorganic nitrogen was remained in the top zone between 0 and 10 cm depth of fertigated soil, while, most of the inorganic nitrogen (91%) was accumulated in the top zone of broadcast-applied soil. Of inorganic nitrogen derived from urea, the percentage of $NO_3{^-}$ was much higher for fertigation (99%) than for surface application (62%). The relatively lower recovery of urea-derived inorganic nitrogen of broadcast-applied urea-N (51%) than that of fertigated urea-N (89%) was attributable to enhanced $NH_3$ volatilization.

  • PDF

Effect of Soil Water on the Change in Soil pH and Nutrients Movement under Rainfed Condition in Bare Soil (토양수분(土壤水分) 조건(條件)에 따른 pH 변화(變化)와 무관수(無灌水) 나지구(裸地區)에서의 양분이동(養分移動))

  • Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.4
    • /
    • pp.263-268
    • /
    • 1994
  • Field microplot(D 20cm, L 85cm) experiment filled with Bonryang sandy loam soil(Typic Udifluvents) was conducted to obtain quantitative information on the change of soil pH under different soil moisture regime and ladino clover cultivation, and the movement of applied nutrient under the rainfed bare soil condition. Slaked lime increased soil pH of the applied layer. $NH_4-N$ evolved from urea hydrolysis was more effective in raising the subsoil pH rather than the exchangeable Mg and Ca. Under the different soil miosture condition downward movement of Cl and $NO_3-N$ lowered subsoil pH during the middle of ladino clover growth. Leaching of CI and $NO_3-N$ down to the out of the soil microplot and increasing movement of Ca and Mg into the subsoil produced. a slight increase of subsoil pH during the late crop growth. The mean downward movement of applied nutrient 5.5 months after field installation of microplot in the bare soil under rainfed condition(1207mm) was in the order : Cl= more than 80.0>Inorganic nitrogen= 75.8>K= 67.3>Mg=62.7>Ca=18.1>P=2.3cm respectively.

  • PDF

Urease and nitrification inhibitors with pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and nitrogen use efficiency in perennial ryegrass sward

  • Park, Sang Hyun;Lee, Bok Rye;Kim, Tae Hwan
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.2023-2033
    • /
    • 2021
  • Objective: The present study was conducted to assess the effect of urease inhibitor (hydroquinone [HQ]) and nitrification inhibitor (dicyandiamide [DCD]) on nitrogen (N) use efficiency of pig slurry for perennial ryegrass regrowth yield and its environmental impacts. Methods: A micro-plot experiment was conducted using pig slurry-urea 15N treated with HQ and/or DCD and applied at a rate of 200 kg N/ha. The flows of N derived from the pig slurry urea to herbage regrowth and soils as well as soil N mineralization were estimated by tracing pig slurry-urea 15N, and the N losses via ammonia (NH3), nitrous oxide (N2O) emission, and nitrate (NO3-) leaching were quantified for a 56 d regrowth of perennial ryegrass (Lolium perenne) sward. Results: Herbage dry matter at the final regrowth at 56 d was significantly higher in the HQ and/or DCD applied plots, with a 24.5% to 42.2% increase in 15N recovery by herbage compared with the control. Significant increases in soil 15N recovery were also observed in the plots applied with the inhibitors, accompanied by the increased N content converted to soil inorganic N (NH4++NO3-) (17.3% to 28.8% higher than that of the control). The estimated loss, which was not accounted for in the herbage-soil system, was lower in the plots applied with the inhibitors (25.6% on average) than that of control (38.0%). Positive effects of urease and/or nitrification inhibitors on reducing N losses to the environment were observed at the final regrowth (56 d), at which cumulative NH3 emission was reduced by 26.8% (on average 3 inhibitor treatments), N2O emission by 50.2% and NO3- leaching by 10.6% compared to those of the control. Conclusion: The proper application of urease and nitrification inhibitors would be an efficient strategy to improve the N use efficiency of pig slurry while mitigating hazardous environmental impacts.

Nutrients Removal Efficiency by Vegetation Density on Constructed Wetland from Small Watershed (소수계 유역 인공습지에서 식생 밀도 차이에 다른 영양염류 제거효율)

  • Ko, Jee-Yeon;Kang, Hang-Won;Lee, Jae-Sang;Kim, Chun-Song;Sakadevan, K.;Bavor, H.J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.266-272
    • /
    • 2003
  • This study was conducted to evaluate effects of 2 constructed wetlands with different vegetation states (plumpton park wetland and Woodcroft park wetland) for reducing non-point source pollution from small watershed consisted of residential and agricultural area in suburban district of Sydney, Australia. The total nitrogen and phosphate removal efficiency of Plumpton park constructed wetland, composed of stable and dense vegetation, were 38.3% and 26.2% and Woodcroft park constructed wetland having still poor vegetation due to the short time to settle down transplanted plants after construction, showed relatively low removal efficiency of 20.2% and 14.0%. The removal efficiency of inorganic nutrients such as $NH_4-N$, $NO_3-N$, $PO_4^{-3}$ were higher than total nitrogen and phosphate because plants and microorganisms in rhizosphere of constructed wetlands took up inorganic nutrients shortly. According to the type of wetland inflow, the nutrients removal efficiency of storm water flow was lower than base flow.

Effects of Dolomite and Oyster Shell on Nitrogen Processes in an Acidic Mine Soil Applied with Livestock Manure Compost

  • Yun, Seok-In;Seo, Dong-Hyuk;Kang, Ho Sang;Cheng, Hyocheng;Lee, Gunteak;Choi, Woo-Jung;Lee, Chang-Kyu;Jung, Mun Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.614-620
    • /
    • 2016
  • Mine soils are usually unfavorable for plant growth due to their acidic condition and low contents of organic matter and nutrients. To investigate the effect of organic material and lime on nitrogen processes in an acidic metal mine soil, we conducted an incubation experiment with treating livestock manure compost, dolomite, and oyster shell and measured soil pH, dehydrogenase activity, and concentration of soil inorganic N ($NH_4{^+}$ and $NO_3{^-}$). Compost increased not only soil inorganic N concentration, but also soil pH from 4.4 to 4.8 and dehydrogenase activity from 2.4 to $3.9{\mu}g\;TPF\;g^{-1}day^{-1}$. Applying lime with compost significantly (P<0.05) increased soil pH (5.9-6.4) and dehydrogenase activity ($4.3-7.0{\mu}g\;TPF\;g^{-1}day^{-1}$) compared with applying only compost. Here, the variation in dehydrogenase activity was significantly (P<0.05) correlated with that in soil pH. Soil inorganic N decreased with time by 14 days after treatment (DAT) due to N immobilization, but increased with time after 14 DAT. At 28 DAT, soil inorganic N was significantly (P<0.05) higher in the lime treatments than the only compost treatment. Especially the enhanced dehydrogenase activity in the lime treatments would increase soil inorganic N due to the favored mineralization of organic matter. Although compost and lime increased soil microbial biomass and enzyme activity, ammonia oxidation still proceeded slowly. We concluded that compost and lime in acidic mine soils could increase soil microbial activity and inorganic N concentration, but considerable ammonium could remain for a relatively long time.

Cultural characteristics of Cordyceps militaris strain 'Yedang 3' on various media and nutritional conditions

  • Lee, Byung-Joo;Lee, Mi-Ae;Kim, Yong-Gyun;Lee, Kwang-Won;Choi, Young-Sang;Lee, Byung-Eui;Song, Ho-Yeon
    • Journal of Mushroom
    • /
    • v.11 no.3
    • /
    • pp.124-130
    • /
    • 2013
  • The effects of environmental and nutritional requirement such as temperature, pH, different media, carbon, nitrogen, and carbon-to-nitrogen ratio on the mycelial growth of Cordyceps militaris strain 'Yedang 3' were studied. The optimum temperature and pH for the growth of mycelium were $20-25^{\circ}C$ and pH 6-7, respectively. Out of ten media tested, mushroom complete media (MCM) was the best medium for fast mycelial growth, and Sabouraud's dextrose agar yeast extract (SDAY), malt extract yeast extract agar (YMA) also were favored. The color and shape of colonies varied in different media. The best carbon sources for mycelial growth were fructose, mannitol, and sucrose, whereas the best nitrogen sources were tryptone and peptone. However, mycelia grew slowly in inorganic nitrogen compounds such as $NH_4Cl$, $(NH_4)_2SO_4$, $NH_4NO_3$, and $NaNO_3$. The optimum C:N ratio observed on the culture media was 30-40 range. These results provided basic information on cultural characteristics of vegetative growth and might be useful for spawn production in Cordyceps militaris.

Freshwater Ecosystem (Mulkol) and Periphytic Algal Biomass in the Tok Island, Korea (독도의 담수환경 (물골)과 부착조류 생물량)

  • Kim, Mi-Kyung;Kang, Chang-Keun;Hwang, Soon-Jin;Chung, Mi-Hee;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.463-466
    • /
    • 2003
  • This study was conducted to introduce the characteristics of the freshwater environment of Mulkol, considering that it is less known area about the ecosystem of the Tok Island. The salinity of freshwater in the Mulkol was less than 2.0 psu, while its periphytic algal biomass was thriving with 25.9 ${\mu}g\;chl-a/cm^2$. As for the nutrients in water, the content of $NH_4$ was higher than the rest of inorganic nitrogen components, and SRP and SRSi were much higher as 117.3 ${\mu}$g P/l and 4,104.6 ${\mu}$g Si/l respectively, than nitrogen components. Also, the ratio of N/P was found less than 1.0, revealing the condition that N was greatly limited. The high level of nutrient concentration and periphytic algal biomass at the Mulkol ecosystem could be explained as a result of natural pollution, but no full explanation was made in this study. It is a question that needs additional research in the future.