• Title/Summary/Keyword: Inorganic Salt

Search Result 264, Processing Time 0.033 seconds

Ultrasound-Assisted Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Cultures (식물세포배양으로부터 파클리탁셀 회수를 위한 초음파를 이용한 액-액 추출)

  • Ha, Geon-Soo;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.229-233
    • /
    • 2016
  • In this study, an efficient ultrasound-assisted liquid-liquid extraction process was developed for recovering of paclitaxel from plant cell cultures. The optimal ultrasonic power and operating time were 250 W and 15 min at fixed ratio of bottom phase, methylene chloride to top phase, MeOH (25%, v/v). Under the optimal conditions developed in the present method, most of the paclitaxel (~92%) was recovered from crude extract by a single extraction step. Due to the synergistic effect of ultrasound by the addition of inorganic salt, an appropriate inorganic salt concentration and the ultrasonic power were found to be required for the effective recovery of paclitaxel using ultrasound-assisted liquid-liquid extraction.

Effect of NaCl Treatment on Absorption of Inorganic Nutrient and Growth in Rice (NaCl 처리가 벼의 무기성분 흡수 및 생육에 미치는 영향)

  • 정진일;고종철;이승엽;권태오;이동진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.465-468
    • /
    • 2003
  • In order to find out the basic information for salt tolerance in vice (Oryza sativa L.), effects of NaCl treatment on absorption of inorganic components and growth were investigated in 6 japonica and 5 tongil varieties and compared to the salt tolerance variety, Annapurna. The absorption of N and $\textrm{P}_2\textrm{O}_5$ was less repressed than that of $\textrm{K}_2\textrm{O}$, MgO, CaO, and $\textrm{Si}\textrm{O}_2$ which were a little affected by NaCl treatment. $\textrm{K}_2\textrm{O}$ was the most highly repressed component in the absorption of inorganic components, followed by MgO, CaO, total-N, $\textrm{P}_2\textrm{O}_5$ and $\textrm{Si}\textrm{O}_2$. $\textrm{Na}_2\textrm{O}$ content was increased about twenty times to the control at 30days after NaCl treatment, and tonsil varieties more than absorbed japonica ones. Dry weight of japonica varieties by NaCl treatment was less reduced than that of tonsil varieties, followed by Seomjinbyeo, Sinseonchalbyeo, Nakdongbyeo, Daechoungbyeo, Dongjinbyeo and Chuchoungbyeo in japonica group, and Milyang30, Gayeabyeo, Jangseongbyeo, Chilseongbyeo and Taebackbyeo in tonsil group. The relationship between dry weight reduction and Na/K ratio showed positively significant correlation in rice.

Improving the Corrosion Resistance of Cold-Rolled Carbon Steel by Treatment with a Hybrid Organic/Inorganic Coating Solution (유/무기 하이브리드 코팅액에 의한 냉간압연강판의 내식특성)

  • Kim, Jung-Ryang;Choi, Chang-Min;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the past, a very popular way to reduce the corrosion rate of zinc was the use of chemical conversion layers based on $Cr^{+6}$. However, the use of chromium salts is now restricted because of environmental protection legislation. Previous research investigated the optimum corrosion resistance of galvanized steel treated with an organic/inorganic solution containing Si. The result showed that the optimum corrosion resistance occurred by heat treatment of $190^{\circ}C$ in 5 min. In this study, one organic and three hybrid organic/inorganic coating solutions were applied to cold-rolled (CR) carbon steel. The coatings were then evaluated for corrosion resistance under a salt spray test. The coating solutions examined in this study consisted of urethane-only, urethane-Si, urethane-Si-Ti, and urethane-Si-Ti-epoxy. The results of the 7 h salt spray test showed that the urethane-Si-Ti and urethane-Si-Ti-epoxy coating solutions had superior corrosion resistance on CR steel.

Dechlorination/Solidification of LiCl Waste by Using a Synthetic Inorganic Composite with Different Compositions (합성무기복합체 조성변화에 따른 모의 LiCl 염폐기물의 탈염소화/고형화)

  • Kim, Na-Young;Cho, In Hak;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.211-221
    • /
    • 2016
  • Waste salt generated from a pyro-processing for the recovery of uranium and transuranic elements has high volatility at vitrification temperature and low compatibility in conventional waste glasses. For this reason, KAERI (Korea Atomic Energy Research Institute) suggested a new method to de-chlorinate waste salt by using an inorganic composite named SAP ($SiO_2-Al_2O_3-P_2O_5$). In this study, the de-chlorination behavior of waste salt and the microstructure of consolidated form were examined by adding $B_2O_3$ and $Fe_2O_3$ to the original SAP composition. De-chlorination behavior of metal chloride waste was slightly changed with given compositions, compared with that of original SAP. In the consolidated forms, the phase separation between Si-rich phase and P-rich phase decreases with the amount of $Al_2O_3$ or $B_2O_3$ as a connecting agent between Si and P-rich phase. The results of PCT (Product Consistency Test) indicated that the leach-resistance of consolidated forms out of reference composition was lowered, even though the leach-resistance was higher than that of EA (Environmental Assessment) glass. From these results, it could be inferred that the change in the content of Al or B in U-SAP affected the microstructure and leach-resistance of consolidated form. Further studies related with correlation between composition and characteristics of wasteform are required for a better understanding.

Growth and Physiological Characteristics in a Halophyte Suaeda glauca under Different NaCl Concentrations (염생식물 나문재의 염농도에 따른 생장 및 생리적 특성)

  • Kim, Ji-Young;Seong, Phil-Mo;Lee, Deog-Bae;Chung, Nam-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.48-54
    • /
    • 2019
  • This research was carried out to investigate the plant growth, inorganic ion and amino acid content characteristics in a halophyte, Suaeda glauca, under different NaCl concentrations for cultivating in the reclaimed land. S. glauca was hydroponically cultivated under 0, 50, 100, 200, 300 and 400 mM NaCl concentrations with Hogland's nutrient solution. To evaluate growth response under different NaCl concentrations, plant height and number of branches, dry weight, Fv/Fm value, and photosynthetic efficiency were investigated. To find out physiological characteristic, inorganic ion contents and amino acids in the plant were evaluated. The optimum concentration of NaCl for plant growth were 50 mM. The plant growth were gradually decreased in the concentration ranged from 100 to 400 mM. As increasing of NaCl concentration, Na ion was increased, but K, Ca, Mg ions were decreased in the plant. The amino acid contents were varied due to NaCl concentrations, but most of amino acids content in total plant was the lowest at 50 mM. Conversely, proline was exceptionally high at 50 mM of NaCl concentration. The Fv/Fm value was the highest at 50 mM of NaCl concentration. From these results, the optimum salt concentration for the growth of S. glauca was 50 mM, but the plant seems to adapt in a variety of salt environments in view of the change of ions and amino acids depending on salt concentration and the maintenance of photosynthetic efficiency even under high salt condition.

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.

Corrosion Resistance of Galvanized Steel by Treating Modified Si Organic/Inorganic Hybrid Coating Solution (Si 변성 유/무기 하이브리드 코팅액에 의한 아연도금강판의 내식특성)

  • Seo, Hyun-Soo;Moon, Hee-Joon;Kim, Jung-Ryang;Kim, Jong-Soon;Ahn, Seok-Hwan;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • Galvanized steel has gone through a chemical process to keep it from corroding. The steel gets coated in layers of zinc because rust will not attack this protective metal. For countless outdoor, marine, or industrial applications, galvanized steel is an essential fabrication component. The reduction of the corrosion rate of zinc is an important topic. In the past, a very popular way to reduce the corrosion rate of zinc was to use chemical conversion layers based on $Cr^{+6}$. However, a significant problem that has arisen is that the use of chromium salts is now restricted because of environmental protection legislation. Therefore, it is very important to develop new zinc surface treatments that are environmentally friendly to improve the corrosion resistance of zinc and adhesion with a final organic protective layer. In this study, a Urethane solution (only Urethane 20 wt.%; S-700) and an organic/inorganic solution with Si (Si polysilicate 10 wt.% + Urethane 10 wt.%; LRO-317) are used. Based on the salt spray test of 72 h, S-700 and LRO-317 had a superior effect for the corrosion resistance on EGI and HDGI, respectively.

Production of Bioflocculant by Agrobacterium sp. KF-67 (Agrobacterium sp. KF-67에 의한 미생물 응집제 생산)

  • 정준영;김교창;도대홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.295-301
    • /
    • 1997
  • Among 120 microorganisms isolated from soil, KF-67 was the best producer of flocculant and was examined for flocculating ability in the kaolin clay and CaCl2 suspension. KF-67 was identified to be a species belong to the genus Agrobacterium sp. The influence of components of the culture medium for flocculant production by Agrobacterium sp. KF-67 was studied. The favorable carbon and inorganic nitrogen source for production of the flocculant were glucose and NH4NO3 and their addition concentrations were 2% and 0.1%, respectively. Addition of the organic nitrogen such as yeast extract, peptone and inorganic salt such as CaCO3 significantly increased the production of flocculant. These result indicated that the production of flocculant by Agrobacterium sp. was significantly affected by both organic nitrogen and inorganic salt. The components of the optimum culture medium were 2% glucose, 0.1% NH4NO3, 0.01% yeast extract, 0.01% peptone, 0.04% CaCO3, 0.03% NaCl in initial pH 7.5 when cultured with rotary shaker controlled at 3$0^{\circ}C$ and 120 rpm. Under the optimum culture medium, flocculant production was highly improved about 76% than that isolation medium.

  • PDF

Corrosion Resistance of Al6061-T6 by Organic/Inorganic Hybrid Coating Solution (유/무기하이브리드 코팅액에 의한 Al6061-T6의 내식 특성)

  • Mi-Hyang Park;Ki-Hang Shin;Byoung-Chul Choi;Byung-Hyun Ahn;Gum-Hwa Lee;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.591-598
    • /
    • 2023
  • In this study, the corrosion resistance by salt spray was evaluated using A6061-T6 for an electric vehicle battery pack case coated with an organic/inorganic hybrid solution. The lowest curing temperature of 190 ℃ resulted in significant corrosion and pitting. Meanwhile, no corrosion was observed in the coated specimens at 210 ℃ and 230 ℃ except at 210 ℃ - 6 min and 8 min. The surface of the as-received coating specimen observed by FE-SEM exhibited streaks and dents in the rolling direction, but the coating surface was clean. On the 190 ℃ - 6 min coating specimen, which had a lot of corrosion, rolling streaks spread, and dents were caused by corrosion. The 200 ℃ - 12 min coating specimen did not show corrosion, but it showed an etched surface. In the line profile, Si, the main component of the coating solution, was detected the most, and Ti was also detected. In the coating specimens with salt spray, O increased and Si decreased, regardless of corrosion. The peeling rate by adhesion evaluation was 26 - 87% for the 190 ℃ coating specimen, 4 - 83% for the 210 ℃ coating specimen, and 94 - 100% for the 230 ℃ coating specimen. The optimal curing conditions for the coating solution used in this study were 210 ℃ for 10 min.

A Study of Recycling Process to Recovery Valuable Resources from Aluminum Black Dross (알루미늄 블랙드로스로부터 유가자원 회수를 위한 재활용 공정 연구)

  • Kang, Yubin;Im, Byoungyong;Kim, Dae-Guen;Lee, Chan Gi;Ahn, Byung-Doo;Kim, Yong Hwan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.61-68
    • /
    • 2018
  • The aluminum dross is oxide generated on the surface of the molten metal during the aluminum melting process and it is divided into white dross and black dross according to presence of the Salt flux. White dross has high metal content and is recycled via the melting process. Black dross is largely berried, because the it has a low metal content and difficulty in separating the components. Black dross contains a salt components such as NaCl and KCl, and inorganic materials such as $Al_2O_3$ and MgO, and it is necessary to study the technology to recover and recycle such valuable resources. In this study, a process for recycling aluminum black dross was proposed. The inorganic and soluble substances present in the black dross were separated through crushing-dissolution-solid/liquid separation-decompression evaporating. By controlling the ratio of water and black dross, the recovery condition of the separated product was optimized and we confirmed the highest Salt flux recovery efficiency 91 wt.% at black dross:water ratio 1:9. Finally, Through the synthesis of zeolite using recovered ceramic material, the materialization possibility of black dross was confirmed.