• Title/Summary/Keyword: Inorganic Nitrogen

Search Result 801, Processing Time 0.03 seconds

Effects of Nutritional Conditions on Tobacco (Nicotianatcbfeum L) Cell Suspension Culture (담배세포 (Nicotiana tabacum) 의 액체배양에 관한 연구)

  • 윤경은;김용철;민태기;손세호;강서규
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1979
  • For the preliminary experiments of mass Production of tobacco cells in tank culture, the effects of nutritional conditions on the growth of suspended cells were investigated ; 1. The tobacco cell growth was affected by concentrations of sucrose or inorganic phosphate, type of nitrogen source, and plant hormone, especially 2, 4-D. 2. The optimum level of sucrose concentration was 3% and the level of inorganic phosphate was 0.3mg /ml, which was about twice as high as the level of Linsmaier - Skoog medium. 3. The best growth was observed when the ratio of nitrate nitrogen to ammonium nitrogen was 2 : 1, where the total nitrogen content was equal to that of nitrogen source. 4. To find out the mechanism of promotive effects of 214-D and inorganic phosphate on the tobacco cell growth, the respiration and metabolism of $^{14}\textrm{C}$-91ucose were investigated. Addition of 2, 4 -D in culture medium increased if 2, 4-D (0.2ppm )was added to medium or the level of inorganic Phosphate was raised 2.5 times as high as standard. In cultures with high inorganic phosphate and 2, 4-D, the absorbed 14C-glucose was converted to amino acids and organic acids rather than remained as sugars.

  • PDF

The Patterns of Inorganic Cations, Nitrogen and Phosphorus of Plants in Moojechi Moor on Mt. Jeongjok. (정족산 무제치늪 식물의 무기이온, 질소 및 인의 양상)

  • 배정진;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • To investigate ecophysiological characteristics of plants species adapted to moor habitat, we selected 22 species plants and analyzed inorganic cations (K, Ca, Mg), heavy metals (Al, Fe, Mn) and total nitrogen and phosphorus quantitatively. Moojechi moor indicated typical acidic and oligotrophic conditions with pH of 5.0∼5.6 (pH 4.3∼5.1 in soil) and EC of 15∼30μ S/cm, and contained very low contents of soil divalent cation such as Ca and Mg but high contents of heavy metals (esp. Al). With respect to inorganic cation contents, investigated plants species showed remarkable interspecific difference. Plant species belonging to J. effusus var. decipiens, M. japonica, I. globosa, M. sacchariflorus, R. mucronulatum, R. yedoense var. poukhanense, H. micrantha, D. rotundifolia showed very low contents of inorganic cation below 400 μ M/g DW, but plant species of C. palustris var. spontanea, L. sessilifolia, P. mandarinorum, C. lineare, S. austriaca sub. glabra, V. mandshurica, A. decursiva showed high cation contents in leaves. Especially, S. austriaca sub. glabra (Compositae) and V. mandshurica (Violaceae) showed pattern accumulating Ca and Mg with plant growth, but I. ensata var. spontanea (Iridaceae) and S. officinalis (Rosaceae) showed decreasing tendency. Meanwhile, most plant species showed low contents of soluble metal ions in leaves in spite of high heavy metal contents on soil, and indicated remarkable interspecific differences in the total contents and composition of heavy metals accumulated. Despite low contents of N and P on soil, most plant species indicated relatively high contents of N and P in leaves at the early stage of growth, and showed slowly decreasing pattern according to growth. Consequently, it seems that plant species inhabited on Moojechi moor cope with acidic-oligotrophic conditions, accumulating inorganic cations and nitrogen at the early growing stage and reutilizing them in the course of growth, and developing heavy metal excluding mechanism.

Impacts of Cover Crops on Early Growth, Nitrogen Uptake and Carbohydrate Composition of Pepper Plants (고추의 초기생장, 질소흡수 및 탄수화물 합성에 대한 녹비작물 시용효과)

  • Sung, Jwa-Kyung;Lee, Sang-Min;Lee, Yong-Hwan;Choi, Du-Hoi;Kim, Tae-Wan;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.44-49
    • /
    • 2008
  • Sufficient inorganic nitrogen supply for crop growth is crucial for economically sustainable organic farming. The effects of an application of cover crop biomass on crop growth, nitrogen utilization and carbohydrate composition were investigated during early stage. Short-term changes in soil nitrogen after incorporating fresh hairy vetch and rye shoots were measured. The inorganic nitrogen from cover crops reached the peak at 15 ($NH_4-N$) and 24 ($NO_3-N$) days after incorporation, and then decreased rapidly. The highest concentration of soil nitrate showed at 27 days of incorporation in hairy vetch and at 18 days in rye, and three fold differences exhibited between two treatments. Crop growth under hairy vetch or rye incorporation significantly differed. At 20 DAT, dry matter production in NPK and hairy vetch was about two fold greater than that in rye. Difference in decomposing rates of hairy vetch and rye had also influence on nitrogen status in leaves and roots of pepper plants. Total nitrogen was greater in NPK and hairy vetch than in rye until 20 DAT, whereas inorganic nitrogen (nitrate and nitrite) concentration was higher in rye. Temporal changes in soluble sugars and starch in pepper plants among treatments were similar, although difference in the amount existed. It was suggested that hairy vetch as an alternative nitrogen source promoted crop growth and mineral utilization during early growth stage, whereas an obvious effect in rye was not found.

Evaluation of Forage Productivity and Nutritional Value of Kenaf (Hibiscus cannabinus L.) at Different Fertilizer Application Amounts and Different Stages of Maturity

  • Tomple, Byamungu Mayange;Jo, Ik-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.2
    • /
    • pp.84-95
    • /
    • 2021
  • The purpose of this study was to assess the forage productivity and nutritive value of kenaf at different fertilizer application amounts and various stages of maturity. The experiment was conducted from May to September 2020, the amount of 80 kg of kenaf seed/ha was supplied with different types and amounts of nitrogen fertilizer and the plants were harvested at 10-day intervals from different harvesting dates (24th August and 3rd, 13th, 23rd September). According to the different fertilizer types and application amounts, the highest kenaf height was recorded in the inorganic fertilizer amounts of 200 and 250 kg N/ha and the fresh and DM yield were significantly improved in the inorganic nitrogen amount of 250 kg N/ha. The highest CP and TDN content in the leaf was achieved in the inorganic fertilizer amounts of 150 and 200 kg N/ha, respectively; and the highest TDN content in the stem was also found in the inorganic fertilizer amount of 200 kg N/ha. According to the different harvesting dates, the highest DM ratio was found in the harvesting date of 13th September, the leaf ratio increased with advanced maturity, whereas the stem ratio decreased significantly and the highest DM yield of kenaf was recorded in the harvesting dates of 13th and 23rd September. Besides, the highest CP, CF, CA, ADF, NDF and TDN content in the leaf as influenced by different harvesting dates was 15.4, 31.8, 10.2, 22.1, 34.7 and 76.5%, respectively, and the CP, CA, ADF and TDN in stem decreased significantly with advanced maturity of kenaf. In conclusion, the optimal fertilizer amounts and the appropriate harvesting dates for a high forage yield and high-quality kenaf as livestock feed were the inorganic fertilizer application amounts of 200-250 kg N/ha and from 13th and 23rd September, respectively.

Effects of Carbon and Nitrogen Sources on Fatty Acid Contents and Composition in the Green Microalga, Chlorella sp. 227

  • Cho, Sun-Ja;Lee, Duk-Haeng;Luong, Thao Thanh;Park, So-Ra;Oh, You-Kwan;Lee, Tae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1073-1080
    • /
    • 2011
  • In order to investigate and generalize the effects of carbon and nitrogen sources on the growth of and lipid production in Chlorella sp. 227, several nutritional combinations consisting of different carbon and nitrogen sources and concentrations were given to the media for cultivation of Chlorella sp. 227, respectively. The growth rate and lipid content were affected largely by concentration rather than by sources. The maximum specific growth was negatively affected by low concentrations of carbon and nitrogen. There is a maximum allowable inorganic carbon concentration (less than 500~1,000 mM bicarbonate) in autotrophic culture, but the maximum lipid content per gram dry cell weight (g DCW) was little affected by the concentration of inorganic carbon within the concentration. The lipid content per g DCW was increased when the microalga was cultured with the addition of glucose and bicarbonate (mixotrophic) at a fixed nitrogen concentration and with the lowest nitrogen concentration (0.2 mM), relatively. Considering that lipid contents per g DCW increased in those conditions, it suggests that a high ratio of carbon to nitrogen in culture media promotes lipid accumulation in the cells. Interestingly, a significant increase of the oleic acid amount to total fatty acids was observed in those conditions. These results showed the possibility to induce lipid production of high quality and content per g DCW by modifying the cultivation conditions.

Analysis of the Fertilizing Effects of Hydroponic Waste Solution on Lettuce (Lactuca sativa var. captitata) Cultivation - Based on Inorganic Nitrogen Content - (상추재배를 위한 시설하우스 배액의 비효평가 - 무기태 질소를 중심으로 -)

  • Yun, Sung-Wook;Lim, Ju-Mi;Moon, Jongpil;Jang, Jaekyoung;Park, Minjung;Son, Jinkwan;Lee, Hyun-Ho;Seo, Hyomin;Choi, Duk-Kyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.13-21
    • /
    • 2021
  • The feasibility of HWS for agricultural use was analyzed through a crop cultivation test to utilize the hydroponic waste solution (HWS) generated from the nutriculture greenhouse. The fertilizing effect of HWS was assessed on the basis of the inorganic nitrogen (N) mostly existed in HWSs, and nitrogen (urea) fertilizer. Lettuce was selected as the target crop influenced by the soil treatment and also for the crop cultivation test. Thus, the change in growth characteristics of lettuce and that in chemical characteristics of the soil were investigated. In terms of the growth of lettuce, the C control group with 70% nitrogen (urea) fertilizer and 30% HWS and the D control group with 50% nitrogen (urea) fertilizer and 50% HWS were more effective than the practice control group (B) with 100% nitrogen (urea) fertilizer. The results of this study confirmed the combined applicability of the chemical fertilizer and HWS for crop cultivation. Because NO3-N present in HWS has a high possibility of leaching into the soil, its applicability as a fertilizer has been considered to be relatively low in Korea. However, if an appropriate mixing ratio of urea fertilizer and HWS could be applied, the problems associated with leaching of nitrate nitrogen could be reduced with beneficial effects on crop cultivation. Thus, future studies are required on the treatment effect of HWS with repeated cultivation, impact assessment on the surrounding environment, and appropriate fertilization methods using nitrogen (urea) fertilizer and HWS. These studies would facilitate the sustainable recycling of HWS.

Ammonium Behavior and Nitrogen Isotope Characteristics of 2:1 Clay Minerals from Submarine Hydrothermal System in the Wakamiko Crater of Kagoshima Bay, Southwestern Japan (일본 서남부 가고시마 와카미코 해저 열수환경에서 형성된 2:1 점토광물 내 암모늄 거동 및 질소동위원소 특성)

  • Jo, Jaeguk;Yamanaka, Toshiro;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.151-160
    • /
    • 2021
  • 2:1 clay minerals such as smectite incorporating ammonium were extracted to investigate the ammonium behavior and nitrogen isotope characteristics for two different sediment cores which were collected from shimmering sites on seafloor of the Wakamiko crater, southwestern Japan. Inorganic nitrogen contents in clay fraction were estimated by calibration curve based on consistently decreasing carbon and nitrogen ratio during the treatment to decompose organic materials, after removing inorganic carbon. The results show that the proportions of inorganic nitrogen for total nitrogen in clay fraction of SWS site(Core#1094MR: av. 18.2%) are higher than those in SES site(Core#1093MG: av. 11.5%). Relatively good crystallinity of the former suggests that exchangeable ammonium was transformed to non-exchangeable ammonium during more evolving diagenetic process. Nitrogen isotope variance of clay fraction(SES site: Core#1093MG: -4.4 ~ +0.2 ‰, av. -2.4 ‰; SWS site: Core#1094MR: -0.7 ~ +3.0 ‰, av. +1.5 ‰) during sequential decomposition of exchangeable ammonium suggests that heat flow derived from deep magma led to nitrogen isotope fractionation between dissolved ammonium and ammonia in the fluids involved in the formation of 2:1 clay mineral incorporating ammonium with local temperature variation.

Movement of Applied Nutrients through Soils by Irrigation -III. Effect of Soil Water on the Movement of Nitrogen (관수(灌水)에 의(依)한 시비양분(施肥養分)의 토양중(土壤中) 이동(移動)에 관(關)한 연구(硏究) -III. 토양수분(土壤水分) 조건(條件)에 따른 질소(窒素)의 이동(移動))

  • Ryu, Kwan-Shig;Yoo, Sun-Ho;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.232-237
    • /
    • 1994
  • Field microplot(D 20cm, 1 85cm) experiment filled with Bonryang sandy loam soil(Typic Udifluvents) was conducted to obtain quantitative information on the movement of applied nitrogen under different soil moisture regimes and ladino clover cultivation. Urea applied to the soil was quickly transformed into $NH_4$-N which was slowly to $NO_3$-N which governed the downward movement of inorganic N applied in the soil. Downward movement of inorganic nitrogen was relatively slow in the early growing stages of ladino clover when $NH_4$-N form was the major inorganic nitrogen in the soil. In the later growing stages when $NO_3$-N was the major form, inorganic nitrogen moved rapidly with soil water. Favorable soil moisture condition increased downward movement and plant uptake of inorganic nitrogen. In the non irrigated bare soil 92% of applied nitrogen was leached downwards out of the microplots at the final harvest. Under the non-irrigated condition 57% of applied nitrogen was taken up by plants and 37% of nitrogen remained in the soil 5.5 months after sowing. Nitrogen uptake by plants in the microplots irrigated at 0.2 bar was 4.03g/microplot at the final harvest, which was more than the amount of nitrogen applied.

  • PDF

Non-Outbreak Cause of Cochlodinium Bloom in the Western Coast of Jaran Bay in Summer, 2013 : On the Basis of Nutrient Data (2013년 하계 자란만 서부 연안의 Cochlodinium 적조 미발생 원인 : 영양염 자료를 중심으로)

  • Kwon, Hyeong-Kyu;Kim, Hyun-Jung;Yang, Han-Seob;Oh, Seok-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.372-381
    • /
    • 2014
  • We investigated cause of non-outbreak of Cochlodinium polykrikoides blooms in the western coast of Jaran Bay during Summer, 2013, by combining chemical field data and physiological data of C. polykrikoides, which had been already published. The predominant species were mainly diatoms, and dominant species was Cerataulina pelagica, Chaetoceros spp., Navicula spp. and Nitzschia spp.. In case of dissolved inorganic nutrients in the western coast of Jaran Bay, dissolved inorganic phosphorus (DIP) was similar to that in previous outbreak period of C. polykrikoides blooms, but dissolved inorganic nitrogen (DIN) was lower. C. polykrikoides might be disadvantageous in competition with diatom species because half-saturation constants (Ks) of C. polykrikoides for inorganic nutrients was lower than those of diatoms. Also, the western coast of Jaran Bay, where DIN concentration is relatively low, was an unfavorable environment for growth of C. polykrikoides characterized by nitrogen dependence. Therefore, C. polykrikoides which have the disadvantageous position for competition of inorganic nutrient might have been suppressed by diatom blooms under environment of low nutrient in the western coast of Jaran Bay.

Effects of different nitrogen fertilizer applications on growth of Chinese cabbage (Brassica rapa L. ssp. pekinensis)

  • Jin-Hyuk Chun;Yun-Gu Kang;Yong-Jun Yu;Jae-Han Lee;Yeo-Uk Yun;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.657-666
    • /
    • 2022
  • Nitrogen (N) is a vital element in growing crops and is essential for improving the yield and quality of crops. Thus, N fertilizer is the most widely used fertilizer and the primary N input source in soil-crop systems. Inorganic fertilizers such as urea are known to improve crop productivity and increase soil fertility. However, application with excessive amounts can interfere with crop growth and accelerate soil acidification. For these reasons, the use of organic fertilizers, which mainly contain organic nitrogen, has gradually increased worldwide. Therefore, this study evaluated the effects of N fertilizer on the growth of Chinese cabbage including its functional compounds glucosinolates (GSLs). For the cultivation of Chinse cabbage, inorganic fertilizer was used for urea, and organic fertilizers were divided into conventional and biochar-based fertilizers. The growth parameters of Chinese cabbage treated by organic fertilizers was better than those of the inorganic fertilizers. Additionally, it was found that their co-application was more efficient. However, their GSL contents were lower with the application of the organic fertilizers. The characteristics of the experimental soil also changed according to the type, amounts and co-application of fertilizers. Therefore, this study presents the basis for an eco-friendly method that can increase the functionality and productivity of Chinese cabbage compared to conventional cultivations.