• 제목/요약/키워드: Inorganic Ion Resist

검색결과 4건 처리시간 0.017초

비정질 $Se_{75}Ge_{25}$박막으로의 이온침투 현상 해석 (An analysis of the ion penetration phenomena in amorphous $Se_{75}Ge_{25}$ thin film)

  • 이현용;정홍배
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권5호
    • /
    • pp.389-396
    • /
    • 1994
  • The bilayer film of Ag/a-S $e_{75.G}$ $e_{25}$ and the monolayer film of a-S $e_{75.G}$ $e_{25}$ act as a negative-type and a positive-type resist in focused ion beam lithography, respectively. Using a model which takes into account the ion stopping power, the ion projected range, the ion concentration implanted into resists and the ion transmission coefficient, etc., the ion resist parameters are calculated for a broad range of ion energies and implanted doses. Ion sources of A $r^{+}$, S $i^{++}$ and G $a^{+}$ are used to expose resists. As the calculated results, the energy loss per unit distance by Ga'$^{+}$ ion is about 10$^{3}$[keV/.mu.M] and nearly constant for all energy range. Especially, the projected range and struggling for 80[keV] G $a^{+}$ ion energy are 0.0425[.mu.m] and 0.020[.mu.m], , respectively and the resist thickness of a-S $e_{75}$ G $e_{25}$ to minimize the ion penetration rate into a substrate is 0.118[.mu.m].u.m]..u.m].

  • PDF

비정질 Se-Ge 박막으로의 LMIS $Ga^+$ 이온 침투현상 (The penetration phenomena of LMIS Ga ion into amorphous Se-Ge thin film)

  • 이현용;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1262-1264
    • /
    • 1993
  • An amorphous $Se_{75}Ge_{25}$ thin film as inorganic resist for the focused ion beam lithography(FIBL) is investigated. This film offers an attractive potential alternative to polymer resists because of a number of advantages, such as the possibility of preparing physically uniform films of thickness as small as 200A and obtaining both positive and negative resist action in the same material, compatibility with dry processing, the sensitivity on optical, e-beam and ion beam exposure, the high-temperature stability, etc. In previous paper, the defocused ion beam-induced characteristics in a-$Se_{75}Ge_{25}$ film has been propose. Practically it is neccesary to know the relation with resist and source ions. For the purpose, the ion stopping power, the ion projected range and ion transmission coefficiency are studied. In this paper, the theoretically calculated values of parameters are presented and compared with theory.

  • PDF

집속 이온빔 마이크로리소그라피를 위한 비정질 $Se_{75}Ge_{25}$ 무기질 레지스터의 이온 유기 변화 (Ion-Induced Changes in a $Se_{75}Ge_{25}$ Inoaganic Resist for Focused Ion Beam Microlithgraphy)

  • 이현용;박태성;정홍배;강승언;김종빈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 춘계학술대회 논문집
    • /
    • pp.30-33
    • /
    • 1992
  • This thesis was investigated on ion-induced characteristics in a-$Se_{75}Ge_{25}$ positive and negative resists for focused-ion-beam microlithogaphy. The exposed a-$Se_{75}Ge_{25}$ inorganic thin film shows an increase in optical absorption after exposure to~$10_{16}$ dose of Ga+. The observed shift in the absorption edge toward longer wavelengths is consistent with that in films exposed to band-gap photons(~$10^{21}$photons/cm2). This result may be related with microstructural rearrangements with in the short range of SeGe network. Due to changes in the short range order, the chemical bonding may be affected, which results in increased chemical dissolution in ion-induced film. Also, this resist exhibits good thermal stability because of its high Tg(~$220^{\circ}C$). When focused ion beams are used for direct exposure of resist over a substrate, unwanted implantation of the substrate may be an issue. A possible way to avoid this is to match the thickness of the resist to the range of ions in the resist. Thin aspect is currently under investigation.

  • PDF

집속이온빔 (FIB) 레지스트를 위한 비정질 $Se_{75}Ge_{25}$ 박막의 이온 및 광유기특성 (-The Optical- and Ion-Induced Characteristics of a-$Se_{75}Ge_{25}$ Thin Film for Focused Ion Beam (FIB)-)

  • 이현용;박태성;김종빈;이영종;정홍배;조광섭;강승언;황호정;박선우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.843-846
    • /
    • 1992
  • This thesis was investigated on optical-and ion-induced characteristics in positive(a-$Se_{75}Ge_{25}$) and negative (Ag/a-$Se_{75}Ge_{25}$) resists for focused-ion-beam microlithogaphy. The a-$Se_{75}Ge_{25}$ inorganic thin film shows an increase in optical absorption after exposure to$\sim$$10^{16}$ dose(ions/$cm^{2}$) of Ga ions. The observed shift in the absorption edge toward longer wavelengths is consistent with that in films exposed to band-gap photons ($\sim$$10^{20}$ photons/$cm^{2}$). But, ion induced shift is twice as much as that in film exposed to optical radiation. This result may be related with microstructural rearrangements with in the short range of SeGe network. Due to changes in the short range order, the chemical bonding may be affected, which results in increased chemical dissolution in ion-induced film. Also, this resist exhibits good thermal stability because of its high Tg(~220$^{\circ}C$). The composition of deposited film measured by AES is consistent with that of bulk.

  • PDF