• Title/Summary/Keyword: Inner-spherical CVT

Search Result 6, Processing Time 0.02 seconds

DEVELOPMENT OF INNER-SPHERICAL CONTINUOUSLY VARIABLE TRANSMISSION FOR BICYCLES

  • Park, M.W.;Lee, H.W.;Park, N.G.;Sang, H.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.593-598
    • /
    • 2007
  • A new continuously variable transmission for bicycles(B-CVT) is developed by using a traction drive mechanism having inner and outer spherical rotors. The B-CVT has high power efficiency, large torque capacity, improved drivability and good packageability. The ratio change mechanism for the B-CVT is very simple, in contrast with other traction drive CVTs. After completing a conceptual design, a performance analysis and a detail design, a prototype of the B-CVT has been manufactured. The prototype has rated power of 100 watts, pedal speed of 6 rad/s and an overall speed ratio of 1.0-4.0. A bench test and an actual bicycle test have been performed to verify the practicability of the B-CVT.

An Inner-spherical Continuously Variable Transmission for Electric Bicycles

  • Park, Moon-Woo;Lee, Hyoung-Woo;Park, No-Gill
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.7-11
    • /
    • 2008
  • A new continuously variable transmission (CVT) for electric bicycles was developed using a traction drive mechanism with inner and outer spherical rotors. This electric bicycle CVT permits three propulsion modes: human-power only, motor-power only, or a combination of motor power and human power. In addition, the electric bicycle CVT has high power efficiency, large torque capacity, improved drivability, and good packageability. A prototype was manufactured based on a conceptual design, a performance analysis, and a detailed design. This prototype has a rated power of 250 W and input motor speed of 20 rad/s for an overall speed ratio in the range 0.3-1.2. A bench test was conducted to measure the power transmission performance of the prototype.

Development of the Inner Spherical Traction Continuously Variable Transmission (내구면 접촉식 무단변속장치 개발)

  • Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.863-869
    • /
    • 2006
  • A new CVT, the inner spherical traction CVT (ISCVT) is introduced. Transmission of the most scooters is the self-controlled variable pulley-belt type of CVT having some disadvantages in the fuel consumption and the limitation of the transmittable power due to the slippage between the belt and pulley. Unlike this, ISCVT controlled directly by driver is more efficient and the contact mechanism having the same line of contact normal of the spherical rotors of different radii on common center causes that the power density and torque capacity are remarkably improved. The prototype with the specifications of 50cc scooter is designed and tested.

CONCEPTUAL DESIGN OF INNER-SPHERICAL CONTINUOUSLY VARIABLE TRANSMISSION FOR BICYCLE USAGE

  • SEONG S. H.;RYU J. H.;LEE H. W.;PARK N. G.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.467-473
    • /
    • 2005
  • A continuously variable transmission (CVT) with an inner spherical traction drive was conceptually designed for bicycle usage. The range of the overall speed ratio is from 1.0 to 4.5. The rated power and pedal speed are 100 Watts and 6 rad/s, respectively. The peculiar packageability, high-level power efficiency and high torque capacity were considered in the design process. A compact CVT that can be installed within a $244\times125\times160mm^3$ space and is above 0.9 in efficiency for the rated values was numerically designed. The distribution of efficiency according to the input torque and input speed were calculated. Gradeability in the prescribed operation mode was simulated.

DESIGN OF A SINGLE MODE VARIABLE BRIDGE TYPE SPLIT-POWERED CVT WITH AN INNER-SPHERICAL CONTINUOUSLY VARIABLE UNIT

  • Seong, S.H.;Lee, H.W.;Choi, J.H.;Park, N.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.799-806
    • /
    • 2007
  • One method for improving the torque capacity of the CVT is to use a split-powered CVT(SPCVT) to reduce the power transmitted into a continuously variable unit(CVU). A variable bridge SPCVT with two planetary gear units(PGUs), which are composed of a sun gear, a ring gear, and carrier and planetary gears, can minimize the power to the CVU. However, a SPCVT with a conventional CVT should possess a dual mode, which would allow the conventional CVT to be used at high speeds and an additional gear train to be used at low speeds. The inner-spherical CVU(ISCVU) with an inner and outer spherical contact mechanism developed in this study can cover the range from low to high speeds. The rated power and the overall speed ratios were 100 kW and $0.09{\sim}0.36$, respectively. Power efficiency was numerically calculated to be over 90% over the speed ratio range of $0.1{\sim}0.29$. The maximum shear stress at the two contact areas of the rotor pairs, the minimum life and the overall size were estimated to be 700 MPa, 276 kh and $350{\times}350{\times}400mm^3$, respectively. This study shows that an ISCVU and a variable bridge type PGU can realize the SPCVT with a single mode for a vehicle.

A Study on the Practicability of A Power Splitted Continuously Variable Transmission with Single Mode (단일 모드를 갖는 동력분기식 무단변속기의 실용성에 관한 연구)

  • Seong, Sang-Hoon;Park, No-Gill;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.34-43
    • /
    • 2007
  • As a method to improve the poor torque capacity on the continuously variable transmission(CVT), power splitted devices(PSD) reducing the power entering into the transmission has been considered. But this kind of PSD requires for the variator to be a large coverage of the speed ratio (CSR) Since the CSRs of the well-known push belt or the toroidal ones are not enough large, the power splitted CVTs (PSCVTs) using them should be made with multiple modes. inevitably adding the do9 clutches and the associated accessories. In this paper a PSCVT with single mode is conceptually designed A new continuously variable unit (CVU) consisting of the paired inner and outer spherical rotors is used. The CVU has large CSR and excellent compactness. As a PSD. a variable bridge (VB) using the Planetary gear units (PGUs) is considered because it has an upper bound on the power ratio. An optimal design to minimize the effective efficiency of the PSCVT is carried out. Through the performance analysis on the designed model, good expectation on the practicability in the heavy vehicle system is shown.