• Title/Summary/Keyword: Inner panel

Search Result 167, Processing Time 0.034 seconds

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 특성평가)

  • 정창균;윤석준;성대용;양동열;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.483-486
    • /
    • 2004
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

  • PDF

Development of Automotive Door Inner Panel using AA 5J32 Tailor Rolled Blank (AA 5J32 Tailor Rolled Blank를 이용한 차량용 Door Inner Panel 개발)

  • Jeon, S.J.;Lee, M.Y.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.512-517
    • /
    • 2011
  • TRB(Tailor Rolled Blank) is an emerging manufacturing technology by which engineers are able to change blank thickness continuously within a sheet metal. TRB door inner panels with required larger thicknesses can be used to support localized high loads. In this study, the aluminum alloy 5J32 TRB sheet is used for a door inner panel application. The TRB material properties were varied by using three heat treatment conditions. In order to predict the failure of the aluminum TRB during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. Full-field photogrammetric measurement of the TRB deformation was performed with an ARAMIS 3D system. A FE model of the door inner panel was created using Autoform software. The material properties obtained from the tensile tests were used in the numerical model to simulate the door inner of AA 5J32 for each heat treatment condition. After finite element analysis for the evaluation of formability, a prototype front door panel was manufactured using a hydraulic press.

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 형상의 내부구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 정적 굽힘실험)

  • Jung Chang Gyun;Yoon Seok-Joon;Lee Sang Min;Na Suck-Joo;Lee Sang-hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.175-182
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

Basic Study in Fabrication and Mechanical Characteristics of Ultra Light Inner Structured and Bonded(ISB) Panel Containing Perpendicularly Woven Metal (수직방향 직조 금속망을 이용한 초경량 금속 내부구조 접합판재의 제작 및 특성에 관한 기초 연구)

  • Jung Chang Gyun;Yoon Seok-Joon;Yang Dong-Yol;Lee Sang Min;Na Suck-Joo;Lee Sang-hoon;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.152-158
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, due to their dimensional shape of metal between a pair of metal skin sheets or face sheets. Previous works showed that ISB panels containing inner structures formed as repeated pyramidal shapes saved weight up to $60\%$ in condition of same stiffness comparing with solid sheet. In this work, woven metal is adapted to inner structures replacing pyramidal structures. The test specimens of ISB panel containing woven metal made by multi-point electric resistance welding and 3-point bending test have been carried out. The results of experiments and comparisons of process parameters, stiffness and failure mode are discussed.

Optimal design of Natural Fiber Composite Structure for Automobile

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.21-24
    • /
    • 2016
  • In this study, a optimal design on the hood automotive using eco-friendly natural fiber composites is performed. The hood of an automobile is determined by dividing the Inner panel shape through optimization phase to outer panel and inner panel. It was performed to optimize the size of the thickness of the inner panel and the outer panel by applying a flax/epoxy composite materials. The optimized shape was evaluated for weight-lightening, stability and the pedestrian collision safety. Through the resin flow analysis are confirmed to molding possibility judgment of product.

Performance analysis of light guide panel implemented with laser-processed inner and surface patterns (레이저 가공된 내부 및 표면패턴을 가지는 도광판 성능 분석)

  • Choi, Young-Hee;Shin, Yong-Jin;Choi, Eun-Seo
    • Laser Solutions
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • We proposed new light guide panel (LGP) fabrication method exploiting laser-processed inner scatterers and surface pattern. The proposed method has achieved LGP performance improvement in both brightness and uniformity. The inner scatterers and surface pattern of grid type were fabricated with a 2nd harmonic Nd:YAG pulse laser engraving system and a $CO_2$ laser scanning system, respectively. In the implementation of LGP, inner scatterers was arranged in accordance with linear or curved pattern with changing density and surface pattern was engraved on the surface of an inner-scatterers embedded LGP. The increase of scatterers' density and the use of surface patterns in both linear and curved pattern provided high luminance and uniformity enhancement. While thecurved pattern incorporated with increased scatterers' density and surface patterns yielded brightness improvement with preserving good uniformity, the linear pattern showed highly localized brightness near the light entrance of the LGP. We can also observe that the uniformity was mainly determined by pattern of inner scatterers, and the brightness was improved by the higher density and the utilization of surface patterns. From the results, the use of laser-processed inner and surface patterns can be a potential alternative for efficient and simple LGP fabrication method.

  • PDF

A Study on the Resistance Welding of Metallic Sandwich Panel : Part 1 - Determination of Process Parameters (저항 용접을 이용한 금속 샌드위치 판재 접합에 관한 연구 : Part 1 - 공정변수의 선정)

  • Lee Sang-Min;Kim Jin-Beom;Na Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.49-54
    • /
    • 2005
  • Inner Structured and Bonded(ISB) panel, a kind of metallic sandwich panel, consists of two thin skin plates bonded to a micro-patterned inner structure. Its overall thickness is $1\~3mm$and it has attractive properties such as ultra-lightweight, high efficiency in stiffness-to-weight and strength-to-weight ratio. In many previous studies, resistance welding, brazing and adhesive bonding are studied for joining the panel. However these methods did not consider productivity, but focused on structural characteristics of joined panels, so that the joining process is very complicated and expensive. In this paper, a new joining process with resistance welding is developed. Curved surface electrodes are used to consider the productivity and the stopper is used between electrodes during welding time to maintain the shape of inner structure. Welding time, gap of electrodes and distance between welding points are selected as the process parameters. By measuring the tensile load with respect to the variation of welding time and gap of electrodes, proper welding conditions are studied. Welding time is proper between 1.5-2.5cycle. If welding time is too long, then inner structures are damaged by overheating. Gap of electrode should be shorter than threshold value fur joint strength, when total thickness of inner structure and skin plate is 3.3mm, the threshold distance is 3.0mm.

Try-out and Forming Analysis for a TWB Door Inner Panel (TWB 도어 인너 패널의 트라이아웃과 성형해석)

  • Lee K. S.;Song Y. J.;Kim D. J.;Hahn Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.132-137
    • /
    • 2004
  • In order to reduce automobile parts weight, TWB(Tailored welded blank) forming is widely used in the forming of car panel, such as door inner, side outer panels. In this study, one of the current problems of TWB forming was analyzed, especially for the try-out process of TWB door inner panel without frame. A comparison was made between actual panel measurements and results of forming analysis for formability and springback.

  • PDF

초경량 내부구조 접합판재 제작을 위한 금속내부구조의 설계 변수 분석

  • 정창균;윤석준;성대용;양동열;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.64-64
    • /
    • 2004
  • 최근 복합재료, 신소재 등 다양한 방법을 통해 빔(beam), 바(bar), 패널(panel) 등 초경량 구조재료가 개발되고 있다. 이중 금속 내부구조재를 가진 접합판재(Inner Structured and Bonded panel, ISB panel)은 3차원 형상의 내부구조재가 강성 및 강도를 증가시키는 반면, 부피의 대부분이 비어있어 비강도 및 비강성을 크게 개선시킨다 일반적으로 다양한 트러스 형태의 금속 내부구조물은 허니컴 형상의 내부구조와 유사한 정도로 기계적 특성이 우수하다.(중략)

  • PDF

Study of Analyzing Back Inner Panel Using Static Implicit Finite Element Method (정적-내연적 이론을 이용한 Back Inner 판넬 해석에 관한 연구)

  • Ko C. S.;Lee C. H.;Kim B. S.;Moon W. S.;Jung D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.75-78
    • /
    • 2005
  • The static implicit finite element method is applied effectively to analyze back inner panel stamping processes, which include the forming stage Analysis results examining possibility and validity of the formulation and the factor of study are presented. Further, the simulated results for f/apron panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF