• Title/Summary/Keyword: Inner foam core

Search Result 3, Processing Time 0.018 seconds

Performance Analysis of CFRP Rear Spoiler according to Types of Inner Foam Core under High-speed Driving Condition (고속 주행 상황에서 CFRP 리어 스포일러의 내부 폼 코어 종류에 따른 성능 분석)

  • Sung-Eun Kim;Jun-Geol Ahn;Moon-Sung Kim;Seung-Ji Yang;Ki-Young Kim;Hyun-Ik Yang
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.86-93
    • /
    • 2024
  • The inner foam structure plays an important role in the performance of the carbon-fiber-reinforced plastic (CFRP) rear spoiler used in automobiles. However, there is still a lack of studies for the CFRP-based rear spoiler according to the type of inner foam, especially under the high-speed driving condition. With this motivation, we numerically analyze the performance of the CFRP rear spoiler using various cases of the inner foam under the highspeed driving condition. Here, polymethacrylimide (PMI), polyvinyl chloride (PVC), and styrene acrylonitrile (SAN) resins are employed as the inner foams in this work. The performances are evaluated using the deformation aspects and vibration characteristics when the driving condition is a high-speed condition (200 km/h). Furthermore, to specifically verify the importance of the inner foam in the high-speed condition, we additionally investigate the performance of the CFRP rear spoiler without the inner foam structure (i.e., hollow type). As a result, it is confirmed that among the types of inner foams utilized in this work, the PMI and PVC inner foams have the best deformation aspect and vibration characteristic, respectively. Note that the hollow-type inner foam has inferior performances compared to other inner foams invoked in this study. Consequently, through this study, it can be confirmed that the inner foam structure can significantly improve the performance of the CFRP spoiler under high-speed driving condition (200 km/h), and also that the strengths of the CFRP spoiler can manifest differently depending on the types of inner foam core.

The Back Side Temperature Variation According to Color of Sandwich Panel and Internal Core Material (샌드위치 패널의 외부 색상과 내부 심재에 따른 이면 온도 변화)

  • Park, Jun-Seo;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.25-26
    • /
    • 2023
  • The internal core material and external color of a sandwich panel have a significant impact on the performance of the sandwich panel. For use on roofs and walls, the internal core material and external color must be considered. Therefore, the surface and back side temperatures were measured for each exterior color and inner core material type. For the internal core materials, urethane foam and Expanded Poly Styrene(EPS), which are core materials mainly used in sandwich panels, were selected. As colors, black and ivory were selected according to brightness, and a total of five colors were selected: red, blue, and green, which are the three primary colors of light. As a result, there were differences in surface and temperature depending on the external color and type of internal core material. Regardless of the color, the temperature was measured lower for panels with urethane foam than for panels with an internal core of EPS. This is believed to have been influenced by the difference in thermal conductivity of urethane foam being 0.023W/(m·K) and that of EPS being 0.032W/(m·K). In addition, panels with a black exterior color were found to have higher surface and back temperatures than panels of other colors, and ivory-colored panels had lower back temperatures regardless of the core material. This is proportional to the brightness and light-absorbing characteristics.

  • PDF

A Review of the Physical Performance of Lightweight Aerated Concrete for Use as an Interior Core Material in Fire Doors (방화문 내부 심재로 적용하기 위한 경량기포콘크리트의 물리적 성능 검토)

  • Hong, Sang-Hun;Kim, Bong-Joo;Jung, Ui-In;Kim, Hae-Nah;Park, Jun-Seo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.111-112
    • /
    • 2023
  • With the development of cities, the density of the population is continuously increasing as buildings become larger and more high-rise, but since the Haeundae residential complex fire in Busan in 2010, there has been a growing need to meet the fire protection performance of buildings as large-scale fires continue to occur every year. On the other hand, fire doors, which are one of the fire protection performance of buildings, have been judged unqualified in 82% of cases when fire doors constructed on the actual site were inspected after completion. The reason for this is that paper honeycomb and glasswool, which are used as core materials for fire doors, absorb moisture, reducing thermal insulation performance, and sagging due to increased weight, leading to performance degradation due to warping in empty spaces. To overcome these problems, research is underway to apply lightweight aerated concrete, an inorganic material, as a core material. Therefore, in order to select a blowing agent that produces stable bubbles prior to the production of lightweight bubble concrete for application as a fire door inner core, this study examined the physical performance according to the type of blowing agent and dilution concentration, and the following conclusions were drawn. Compared to vegetable bubbles and independent bubbles, synthetic bubbles have 3~8% higher thermal conductivity than independent bubbles, but 3~6% lower slurry density than vegetable bubbles, and 2~13% higher compressive strength, which is thought to be an improvement of synthetic bubbles.

  • PDF