• 제목/요약/키워드: Inner Hole

검색결과 160건 처리시간 0.033초

Press-fit 단자 접합특성 및 신뢰성 (Bonding Property and Reliability for Press-fit Interconnection)

  • 오상주;김다정;홍원식;오철민
    • 마이크로전자및패키징학회지
    • /
    • 제26권3호
    • /
    • pp.63-69
    • /
    • 2019
  • 전자부품에 대한 보드실장은 아직까지 솔더를 이용한 접합기술을 주로 이용하고 있다. 그러나, 솔더의 크? 및 피로특성으로 인한 접합부 내구한계로, 자동차 전장모듈에서는 반영구적인 접합기술인 프레스 핏(Press-fit) 접합기술 적용을 확대하고 있다. 프레스 핏 접합은 프레스 핏 금속단자를 보드내 쓰루 홀(Through hole)에 기계적으로 삽입하여 체결하는 접합기술로써, 적절한 금속단자의 소성변형으로 쓰루 홀 내부 표면접합을 밀착시킴으로써 강건한 접합을 유도한다. 본 논문에서는 보드내 쓰루 홀 크기 및 표면처리에 따른 프레스 핏 접합 특성 및 신뢰성을 솔더링과 함께 비교하기 위해, 보드 쓰루 홀 크기에 따른 삽입강도 및 삽발강도를 평가하였으며, 열충격 시험을 통한 실시간 저항변화를 통해 프레스 핏 및 솔더링 접합부의 저항변화를 관찰하였다. 또한, 각 접합부위 분석을 통한 프레스 핏 및 솔더링 접합열화를 분석하여 주요 파손모드를 고찰하고자 하였다.

STUDY OF ULTRALUMINOUS X-RAY SOURCES IN SOME NEARBY GALAXIES

  • Singha, Akram Chandrajit;Devi, A Senorita
    • 천문학회지
    • /
    • 제52권1호
    • /
    • pp.1-9
    • /
    • 2019
  • We present the results of the spectral and temporal analysis of eight X-ray point sources in five nearby (distance < 20 Mpc) galaxies observed with Chandra. For spectral analysis, an absorbed powerlaw and an absorbed diskblackbody were used as empirical models. Six sources were found to be equally fitted by both the models while two sources were better fitted by the powerlaw model. Based on model parameters, we estimate the X-ray luminosity of these sources in the energy range 0.3 - 10.0 keV, to be of the order of ${\sim}10^{39}ergs\;s^{-1}$ except for one source (X-8) with $L_X>10^{40}ergs\;s^{-1}$. Five of these maybe classified as Ultraluminous X-ray sources (ULXs) with powerlaw photon index within the range, ${\Gamma}{\sim}1.63-2.63$ while the inner disk temperature, kT ~ 0.68 - 1.93 keV, when fitted with the disk blackbody model. The black hole masses harboured by the X-ray point sources were estimated using the disk blackbody model to be in the stellar mass range, however, the black hole mass of one source (X-6) lies within the range $68.37M_{\odot}{\leq}M_{BH}{\leq}176.32M_{\odot}$, which at the upper limit comes under the Intermediate mass black hole range. But if the emission is considered to be beamed by a factor ~ 5, the black hole mass reduces to ${\sim}75M_{\odot}$. The timing analysis of these sources does not show the presence of any short term variations in the kiloseconds timescales.

공동현상을 고려한 커먼레일용 고압 DME 인젝터 노즐의 최적 설계 연구 (Study on the Optimum Design of High Pressure Common-rail DME Injector Nozzle with Consideration of Cavitation)

  • 정수진;박정권;이상인
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.99-106
    • /
    • 2013
  • DME (Di-Methyl Ether) is synthetic product that is produced through dehydration of methanol or a direct synthesis from syngas. And it is able to save fossil fuel and reduce pollutants of emission such as PM and $CO_2$. In spite of its advantages it is difficult to design DME fuelled engine system because DME fuel may cause to severely generate cavitation and corrosion in fuel delivery system due to physical properties of DME. Therefore, in this study three-dimensional internal flow characteristics with consideration of cavitation were predicted in the DME injector using diesel and DME fuel. Moving grid technique was employed to describe needle motion and 1-D hydraulic simulation of injector was also simulated to obtain transient needle motion profiles. The results of simulation show that cavitations was generated at the inlet of nozzle near high velocity region both diesel and DME. And mass flow rate of DME is reduced by 4.73% compared to that of diesel at maximum valve lift because cavitation region of DME is much more larger. To increase flow rate of DME injector, internal flow simulation has been conducted to investigate the nozzle hole inner R-cut effect. The flow rates of diesel and DME increase as R-cut increases, and flow coefficient of DME fuel injector was increased by 6.3% on average compared with diesel fuelled injector. Finally, optimum shape of DME injector nozzle is suggested through the comparison of flow coefficient with variation of nozzle hole inner R-cut.

이론적 열유동 해석을 이용한 농산물 저장 및 유통 스마트 유닛로드 컨테이너의 통기공 최적화 설계 (Ventilation Hole Optimum Design of Smart Unit Load Container for Storage and Distribution Agricultural Products by Theoretical Heat Flow Analysis)

  • 최동수;김용훈;김진세;박천완;정현모;김기석;박종민
    • 한국포장학회지
    • /
    • 제28권3호
    • /
    • pp.211-215
    • /
    • 2022
  • Air distribution occupies an important position in the smart unit load container design process for agricultural products. Inner air may be uncomfortable because of its temperature, speed, direction, and volume flow rate. It doesn't matter how efficient the ventilation equipment is if the air is not distributed well. The main aim of this study was to design the inlet and outlet fan locations of smart unit load container for agricultural products. A numerical study was performed on the effects of the location of inlet air and outlet air in relation to the container cooling sources on air distribution and thermal comfort. A concept of combining inner container cooling sources with the exhaust outlet was employed in this investigation. Also, in this research, the developed CFD (Computational Fluid Dynamics) models were thoroughly validated. This system was adopted for use in container spaces, where the exhaust outlet was located. In this study, the location of the inlet was derived through CFD for a container with a size of 1,100×1,100×1,700 mm, and it was derived that the inlet was located at the center of the lower part of the container for efficient air flow. It was efficient to position the outlet through the air inlet in the center of the lower part of the container at the top of the same side.

금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활 (Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes)

  • 김동근;장창환;김성재;김대겸;김산하
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

팽나무버섯의 균사배양 중 배양기 내부 통기성 개선 (Studies on the aeration improvement of inner bottle culture system during the mycelial culture of Flammulina velutipes)

  • 심규광;유영진;구창덕;김영석;김명곤
    • 한국버섯학회지
    • /
    • 제10권1호
    • /
    • pp.15-20
    • /
    • 2012
  • 팽나무버섯 병재배($1,100m{\ell}$)에서 배양기 내 통기성이 팽나무버섯의 균사생장과 버섯발생에 미치는 영향을 조사하였다. 배양병 내의 통기성은 배양병 뚜껑에서 천공의 상하위치와 구경 크기로 조절하였고, 통기성 처리의 효과로는 배양병 내 이산화탄소 농도, 수분함량 변화, 키틴 함량, 유리당 함량, 자실체 발생량을 조사하였다. 팽나무버섯 균사배양 중 대수기 정점에서의 배양병 내 이산화탄소 농도는 대조구인 비통기성 무스폰지 뚜껑과, 천공 크기가 작은 뚜껑일수록 상대적으로 높았다. 팽나무버섯 균사 배양체 내 유리당 함량은 구멍 크기가 47mm로 상하로 천공된 뚜껑을 가진 병에서, 그리고 구멍 크기가 26~33mm로 하부만 천공 뚜껑을 가진 병에서 가장 많았다. 키틴 함량은 26mm 크기의 구멍을 하부에만 천공한 뚜껑을 가진 병에서 가장 많았다. 한편 뚜껑에서 천공의 위치가 상하 양쪽이고 천공크기가 42mm~47mm인 배양병에서는 수분 감소가 많아 발이가 불량하고 자실체 생산량도 적었다. 결론적으로 팽나무버섯 병재배 용기 $1,100m{\ell}$ pp병에서 최고의 수량을 나타낸 배양병에서의 뚜껑은 상하 천공으로 19mm 구멍과 하부만의 천공은 26mm 구멍을 내고 통기성 스폰지를 넣은 것으로, 이 때 자실체 생산량은 대조구보다 6~9% 증가하였다.

안쪽축이 회전하는 환형관내 비뉴튼유체 유동 연구 (Flow of Non-Newtonian Fluids in an Annulus with Rotation of the Inner Cylinder)

  • 김영주;우남섭;황영규
    • 터널과지하공간
    • /
    • 제12권4호
    • /
    • pp.277-283
    • /
    • 2002
  • 본 연구는 안쪽축이 회전하고 바깥쪽 실린더는 정지해있는 반경비가0.52이고 30$^{\circ}$ 경사진 동심 환형관내의 헬리컬 유동 특성에 관한 것이다. 비뉴튼 유체인 UC 수용액과 벤토나이트 수용액을 사용하여 안쪽축이 0~400pm으로 회전할 때 축방향 유동을 완전히 발달시킨 후 축방향 압력손실값을 측정하였다. 또한, 헬리컬 유동의 가시화는 불안정한 파를 관찰하기 위해 수행되었다. 현재 연구 결과는 표면마찰계수에 대해 로스비순(Ro)와 레이놀즈수(Re)의 관계를 나타내었다. 또한, 그 결과들은 유동 불안정성 메카니즘의 존재를 보인다. 축회전수가 증가함에 따라 압력손실이 증가하지만, 그 증가폭은 천이 및 난류영역에서는 레이놀즈수가 증가할수록 감소하며, 회전의 영향으로 유동교란이 증진되어 천이가 촉진된다. 또, 이런 유동교란의 증진은 표면마찰계수값의 증가와 함께 임계 레이놀즈수(Re$_{c}$)를 작게 만든다.

환형관내 고-액 2상 유동의 압력손실 변화특성에 대한 연구 (A Study on the pressure loss of sloid-liquid 2 phase flow in an annulus)

  • 우남섭;한상목;황영규;윤치호;김영주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2720-2724
    • /
    • 2007
  • Field measurements have revealed that the pressure drop over a borehole during drilling of a slim oil well or a well with a long reach can depend significantly on the rotation speed of the drill pipe. An accurate prediction of the annular frictional pressure drop is therefore important for conditions where the annular clearance is small. An experimental study was carried out to study solid-liquid two phase flow in a slim hole annulus. Annular velocities of carrier fluids varied from 0.2 m/s to 1.5 m/s. The carrier fluids which were utilized included tap water and CMC water solutions. Pressure drops and average flow rates were measured for the parameters such as inner-pipe rotary speed, carrier fluid velocity, hole inclination and particle injection rate. For both water and CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become.

  • PDF

강관압입후 슬롯 홀을 갖는 비개착 터널공법의 현장적용에 관한 연구 (A Study on Sites Application of Non-open-cut Tunnel Method with Slot Holes in Steel Pipe Pumping)

  • 채영석;송관권;민인기
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.47-51
    • /
    • 2015
  • In the study, a new non-open cut tunnel steel pipe method using slot hole has been developed. As is overcomes shortcomings of conventional methods, it is applied to the field. The main concept of the new method is the steel pipe pumping system with slot holes which, by means of formation slot holes between each steel pipe, applied to the magnitude of the relaxed earth pressure caused by excavation to the ground to prevent ground displacement. The stability of the support members and effect of displacement control of the new method were verified through several ways as numerical analysis and site test. The new method was applied to the construction of a 11.5m wide, 7.4m high and 50m long section that passes side subway and large buildings in inner city. By applying the new method, tunnel construction was successfully completed in 6 months. It decreases the construction period to 30% compared to that of conventional methods, and ground was almost negligible.

파이프 원주방향 용접부의 잔류응력 연구 (A study on the residual stresses in circumferential welds of the pipes)

  • 남궁재관;홍재학
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.693-702
    • /
    • 1991
  • The existence of residual stress in the circumferential butt welded pipes is one of the most important problems concerning stress corrosion cracking in service. In this paper, the residual stress distributions in three kinds of circumferential butt welded pipes were measured by the hole drilling strain gage method and calculation using finite element method is performed and its results are compared with the experiments. At the inner surface of the pipe region near the center line of welding is under high tensile residual stress. However, as the distance from the center line of welding increases, the tensile component decreases and finally becomes compressive residual stress at region far away from the center line of welding. The longitudinal residual stress at the outer surface is compressive regardless of the diameter of pipe and the circumferential stress is changed rom compressive to tensile as pipe diameter increases. The results also demonstrate that the residual stress is mainly caused by self restraint bending force in the pipe welding.