• 제목/요약/키워드: Inlet temperature

검색결과 1,512건 처리시간 0.027초

난방모드 시 $CO_2$ 지열히트펌프의 내부열교환기에 대한 운전특성 (Operating Characteristics of Internal Heat Exchanger for $CO_2$ Geothermal Heat Pump in the Heating Mode)

  • 김재덕;이상재;김선창;김영률
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1226-1231
    • /
    • 2009
  • This paper presents operating characteristics of internal heat exchanger(IHX) for $CO_2$ geothermal heat pump in the heating mode. Mass flow rate of $CO_2$, inlet temperatures of $CO_2$ at high and low pressure side were selected as main effect factors by using fractional factorial DOE(Design of Experiments). And RSM(Response Surface Method) was used in optimization phase. The results show that heat transfer rate of IHX increases when either inlet temperature of low pressure side decreases or inlet temperature of high pressure side increases. Effectiveness of IHX increases with increasing of inlet temperature of either high pressure side or low pressure side. Finally, performance contour map was provided over the operation ranges of the main design factors.

  • PDF

배기매니폴드 직접부착 촉매장치의 배기 유동특성 (Exhaust Flow Characteristics of Catalytic Converter Adapted to Exhaust Manifold)

  • 박영철;이창식
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.837-844
    • /
    • 2003
  • The exhaust gas flow in the inlet collector of close coupled catalyst(CCC) adapted to the exhaust manifold is very complex flow because the exhaust gas is a pulsation flow with several port flow. The distribution of gas flow and temperature in inlet collector effect to the efficiency of catalytic converter. In this study, it measures temperatures on several point in inlet collector with two kind of inlet collector volume. And it analyzes with CFD to exhaust manifold and close coupled catalyst for temperature and flow. Comparing to measured and analyzed result, it find increasing of collector volume effects to catalyst temperature distribution and uniformity of catalytic converter

The Effect of Thermal Diffusivity on the System Efficiency of a DOTEC Cycle

  • Yoon, Jung-In;Choi, Kwang-Hwan;Kwakye-Boateng, Patricia;Son, Chang-Hyo;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.58-63
    • /
    • 2013
  • In this study, the effect of deep ocean condenser inlet temperature ($T_{DOI}$), condenser inlet pressure ($P_{cond,in}$), and thermal diffusivity on system efficiency of some selected refrigerants was analyzed using HYSYS. The proposed DOTEC cycle is similar to the reheat Rankine cycle but eliminates irreversibilities by bleeding a fraction of the steam between certain stages of the turbine. The evaporator inlet mass flow rate, inlet temperature of turbine 1, turbine efficiency and inlet and outlet temperature of heat source were imposed. The working fluids considered are sorted in ascending order of their molecular weights as R717, R600a and R152a. Results indicated that a fluid with a lower boiling point temperature like R717 needs a corresponding high heat source and/or evaporator inlet pressure. Also, the response of thermal diffusivity closely follows the change in TDOI as an increase in $T_{DOI}$ increases $P_{cond,in}$ which reduces thermal diffusivity and system efficiency. Furthermore, the fluid with the nominal boiling point temperature has the highest efficiency with efficiency decreasing with an increase in TDOI.

캐소드극 입구 가습 조건이 고분자 전해질 연료전지의 성능에 미치는 영향 (Effect of Inlet Humidity Condition at Cathode Side on Performance of a Polymer Exchange Membrane Fuel Cell)

  • 문철언;이서희;고동수;양장식;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3423-3428
    • /
    • 2007
  • This paper shows that inlet humidity condition at cathode side is one of dominant parameters affecting the performance of PEMFC. To investigate effects of inlet humidity condition, the performance measurements were conducted for a single PEMFC with two operating variables : cathode relative humidity and dry condition in anode dry. The fuel cell employed for the experiments is a unit PEMFC with a 25$Cm^2$, Nafion$^(R)$112 membrane. As a result of this study, the cell performance is getting higher by increasing inlet humidity condition at cathode side. The cell performance is different from each operating temperature an it has maximum30% higher than dry condition at 60$^{\circ}C$ operating temperature with 80% relative humidity.

  • PDF

Vortex Tube의 부분유입율과 저온 입.출구비가 에너지분리 특성에 미치는 영향 (Effects of the partial admission rate and cold flow inlet-outlet ratio on energy separation of Vortex Tube)

  • 김정수;추홍록;상희선
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.51-59
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air conditioner for special purpose. The phenomena of energy separation through the vortex tube were investigated to see the effects of cold flow inlet-outlet ratios and partial admission rates on the energy separation experimentally. The experiment was carried out with various cold flow inlet-outlet ratios from 0.28 to 10.56 and partial admission rates from 0.176 to 0.956 by varying input pressure and cold air flow ratio. To find best use in a given cold flow inlet-outlet ratio and partial admission rate, the maximum temperature difference of cold air was presented. The experimental results were indicated that there are an optimum range of cold flow inlet-outlet ratio for each partial admission rate and available partial admission rate.

  • PDF

디젤 입자상물질 후처리 장치에서 입자상물질의 연소에 미치는 재생 인자의 영향 (Effects of Regeneration Parameters on Oxidation of Particulate in a Diesel Particulate Trap System)

  • 김재업;조훈;김형욱;박동선;유천;김응서
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.168-177
    • /
    • 1998
  • The effects of the regeneration parameters such as inlet gas temperature, space velocity, oxygen concentration of the exhaust gas, and initial particulate loading on the oxidation of the particulate inside ceramic cordierite filter have been investigated through an engine experiment. As the inlet gas temperature increases, the remarkable filter temperature occurs owing to the rapid combustion rate. Though the higher space velocity affirms the safe regeneration, it also requires much fuel consumption of the burner. For that reason, the space velocity should be compromised considering the fuel economy. The excessive accumulation of the particulate may cause undesirable regeneration temperatures inside filer even under the optimized regeneration condition. The inlet gas temperature should be selected to overcome the variation of the oxygen concentration which is inherent feature of the diesel engine. It is the most important factor in the regeneration control techniques.

  • PDF

반 실험적 방법을 통한 고체 램 제트 성능에 대한 흡입 공기 온도의 영향 (Inlet Air Temperature Effect on the Performance Efficiency of the Solid Fuel Ramjet through Semi-empirical Method)

  • 이태호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.29-33
    • /
    • 2005
  • 고체 램 제트 추진기관에서도 일반 로켓 추진기관에서와 같이 Isp 즉 추력을 증대 시키기 위하여 고체 입자들을 연료에 함유시킨다. 이러한 고체입자가 포함된 연료들은 매우 짧은 연소실 체류시간 때문에 연소 효율의 증대가 필수적이며 흡입공기 온도가 중요한 역할을 한다. 이 흡입공기 온도가 램 제트 성능에 미치는 영향을 조사하였다 성능조사는 실험적 방법에 한계가 있어 연소실험을 통한 연소효율을 이용하여 반-실험적으로 조사하였다. 연소실 흡입공기 온도에 영향을 미치는 인자는 자유 유동장 즉 대기 온도와 비행 마하 수이며 이들에 대한 효과를 조사하였다.

  • PDF

유증기 회수를 위한 VOCs 탈착에 미치는 온도, 압력 및 공기유량의 영향 (Effect of Temperature, Pressure, and Air Flow Rate on VOCs Desorption for Gasoline Vapor Recovery)

  • 이송우;나영수;감상규;이민규
    • 한국환경과학회지
    • /
    • 제22권9호
    • /
    • pp.1131-1139
    • /
    • 2013
  • Desorption characteristics of VOCs were investigated for the effective recovery of gasoline vapor. The adsorption capacity and desorption capacity were excellent at relatively low temperatures. The differences in the desorption capacity were not large in the condition; desorption temperature $25^{\circ}C$, desorption pressure 760 mmHg, inlet air flow rate 0.5 L/min, but were relatively great in the condition; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min. The desorption ability of pentane was increased to about 81.4%, and the desorption ability of hexane was increased to about 102%, also the desorption ability of toluene was increased to about 156.7% by changes of temperature, pressure, inlet air flow rate in the experimental conditions. The optimum desorption condition for the effective recovery of VOCs was in the conditions; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min.

ASSESSMENT OF GAS COOLED FAST REACTOR WITH INDIRECT SUPERCRITICAL $CO_2$ CYCLE

  • Hejzlar, P.;Dostal, V.;Driscoll, M.J.;Dumaz, P.;Poullennec, G.;Alpy, N.
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.109-118
    • /
    • 2006
  • Various indirect power cycle options for a helium cooled gas cooled fast reactor (GFR) with particular focus on a supercritical $CO_2(SCO_2)$ indirect cycle are investigated as an alternative to a helium cooled direct cycle GFR. The balance of plant (BOP) options include helium-nitrogen Brayton cycle, supercritical water Rankine cycle, and $SCO_2$ recompression Brayton power cycle in three versions: (1) basic design with turbine inlet temperature of $550^{\circ}C$, (2) advanced design with turbine inlet temperature of $650^{\circ}C$ and (3) advanced design with the same turbine inlet temperature and reduced compressor inlet temperature. The indirect $SCO_2$ recompression cycle is found attractive since in addition to easier BOP maintenance it allows significant reduction of core outlet temperature, making design of the primary system easier while achieving very attractive efficiencies comparable to or slightly lower than, the efficiency of the reference GFR direct cycle design. In addition, the indirect cycle arrangement allows significant reduction of the GFR &proximate-containment& and the BOP for the $SCO_2$ cycle is very compact. Both these factors will lead to reduced capital cost.

유입.유출구 크기 변화에 따른 CNT용 CVD 장비 내의 열 및 유동해석 (Flow and heat transfer in a thermal CVD for carbon nanotubes according to variation of the inlet and outlet areas)

  • 하다솜;장영운;김종석;윤석범;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.119-124
    • /
    • 2011
  • Flow and temperature field in reactors are important factors for design of thermal chemical vapor deposition system to grow carbon nanotubes. In this study, effects of the variations of the inlet and outlet areas of the CVD reactor to the flow characteristics and temperature field are numerically analyzed. High temperature of the gas in the entrance region is obtained with slow gas speed resulted from the enlarged inlet area. Variation of the exit area has little effects on the flow field and temperature in the reactor. However the largest area among considered cases gives the highest gas temperature though the differences are small.