• 제목/요약/키워드: Inlet shape

검색결과 362건 처리시간 0.025초

엔진 배기매니폴드의 열응력 발생에 관한 설계 인자들의 이론적 연구 (Theoretical Study of Design Parameters for the Thermal Stress in Engine Exhaust Manifold)

  • 최복록
    • 한국기계가공학회지
    • /
    • 제6권1호
    • /
    • pp.50-56
    • /
    • 2007
  • Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from the fact that thermal expansions of the runners are restricted by inlet flange clamped to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Since the failure of an exhaust manifold is mainly caused by geometric constraints between the cylinder head and the manifold, the thermal stress can be controlled by geometric factors. The generic geometric factors include the inter distance (2R), the distance from the head to the outlet (L), the tube diameter(d) and the tube thickness (t). This criteria based on elastic analysis up to onset of yield apparently indicate that the pre-stress also reduces the factor; however, high temperature relaxation may reduce this effect at later operation stage.

  • PDF

2차원 $90^{\circ}$ 곡관에서 균일전단류의 특성에 대한 실험적 연구 (1) -평균유동장- (An Experimental Study of Turbulent Uniform Shear Flow in a Nearly Two-Dimensional $90^{\circ}$ Curved Duct (I) - Mean Flow Field-)

  • 임효재;성형진;정명균
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.834-845
    • /
    • 1995
  • An experimental study is made in a nearly two-dimensional 90.deg. curved duct to investigate the effects of interaction between streamline curvature and mean strain on turbulence. The initial shear at the entrance to the curved duct is varied by an upstream shear generator to produce five different shear conditions ; a uniform flow (UF), a positive weak shear (PW), a positive strong shear(PS), a negative weak shear (NW) and a negative strong shear(NS). With the mean field data of the case UF, variations of the momentum thickness, the shape factor and the skin friction over the convex(inner) surface and the concave (outer) surface are scrutinized quantitatively in-depth. It is found that, while the pressure loss due to curvature is insensitive to the inlet shear rates, the distributions of wall static pressure along both convex and concave surfaces are much influenced by the inlet shear rates.

캐비테이션 감소를 위한 혼타의 형상 연구 (A Study on the Rudder Shapes for the Suppression of Cavitation around a Horn-type Rudder)

  • 박경령;이영길
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.553-564
    • /
    • 2010
  • This paper studies on the rudder shapes for the suppression of the cavitation around a horn-type rudder. To improve the problems due to cavitation, there have been several studies. However, these some studies are recognized as incomplete ways to suppress the rudder cavitation. In this study, the section shapes to suppress the cavitation phenomena are determined by moving the location of maximum thickness for reducing the curvature variation and changing the radius of leading edge. Also, in the pintle part, the curvature radius of the inlet outlet edge of rudder plate is changed. During the design of rudder shape, two-dimensional numerical simulations are firstly performed because those offer some advantages with that cavitation phenomena becomes predictable for a short time, and then the three-dimensional numerical simulations are performed to confirm the determination. The time mean distribution of the propeller slipstream is imposed on the inlet boundary condition. As some results, this paper shows the effects reducing the range of the occurrence of cavitation, and suggests the references on the design of a horn-type rudder for the suppression of cavitation phenomena.

튜브 클리닝 시스템 내부의 유동 특성에 관한 수치해석적 연구 (The Numerical Analysis of Fluid Flow in the Tube Cleaning System)

  • 정경철;이치우
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.63-68
    • /
    • 2014
  • The numerical analysis of fluid flow in the tube cleaning system is examined. The working flow used in this study is seawater, and the temperature change is not considered as the temperature change of seawater in the tube cleaning system is negligible. Also, the analysis is performed under the assumption of steady state. The screens of complicated morphologies are simplified for the analysis, and only one fourth of the tube cleaning system is modeled as the system has a symmetrical shape. The velocity inlet boundary condition is employed for the seawater inlet, whereas the outflow boundary condition is employed for two seawater outlets. In applying the outflow boundary condition for the system with more than two outlets, the flow rate can be arbitrarily assigned. In the analysis, the finite-volume method based numerical analysis tool, the pressure based solver, the standard k-$\varepsilon$ model are utilized, and the under relaxation factor is modified appropriately. From the analysis, the distribution of velocity vectors, pressure and path lines are obtained, and the physical characteristics of fluid flow in the tube cleaning system is well-examined.

쇼트 블라스팅 표면처리를 통한 미세홀 방전가공 성능향상에 관한 연구 (A Study on Performance Improvement of Electrical Discharge Machining for Producing Micro-holes Using a Shot Blasting Surface Treatment)

  • 장한석;김홍석;신기훈
    • 소성∙가공
    • /
    • 제21권5호
    • /
    • pp.312-318
    • /
    • 2012
  • With an increasing trend toward miniaturization, electrical discharge machining(EDM) has been receiving a lot of attention as a suitable production technology for micro-parts, since it enables the machining of hard conductive materials with a high degree of repeatability and without alteration to the material. When a micro-hole is fabricated by EDM, however, the diameter of the inlet hole is larger than that of the outlet region due to the additional discharge effect caused by the eroded particles. In this paper, a shot blasting surface treatment, in which an abrasive material is accelerated through a pressurized nozzle and directed at the surface of a part, is suggested as an effective method to reduce the tapered shape of EDM micro-hole. In addition, the influence of process parameters such as spark-on time and electrode diameter on the machining performance was investigated. It is shown quantitatively that the difference in diameter between the inlet and outlet holes decreases with the shot blasting treatment and with decreasing spark-on time.

관외착빙형 제빙관의 형태 및 관경 변화에 따른 제빙 특성 (Ice Making Characteristics according to Shape and Diameter on Ice-on-Coil Tube)

  • 박기원;정은호;황성수
    • 동력기계공학회지
    • /
    • 제16권5호
    • /
    • pp.32-39
    • /
    • 2012
  • The study experimented to understand ice-on-coil type ice making characteristics on to 3 kinds of circular tube, oval tube and small diameter tube using ice maker. The experiment were carried out under various conditions, that used brine temperature($-10^{\circ}C$, $-6^{\circ}C$), brine flow rate(1.0m/s, 1.8m/s) and inlet water temperature ($6^{\circ}C$, $12^{\circ}C$) etc. Mass of ice per ice making area increased according to the decrease of the brine temperature and inlet water temperature, but that was increased according to the increase of the brine flow rate. Oval ice making tube produced ice 1.11 to 2.46 times that of 9mm circular ice making tube, and 3mm small diameter ice making tube produced ice 1.06 to 1.51 times that of 9mm circular ice making tube.

중공 원통형 고체연료의 열분해 및 연소특성 (The characteristics of pyrolysis and combustion for a hollow cylindrical solid fuel)

  • 민성기;김호영
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.517-527
    • /
    • 1989
  • 본 연구에서는 국내 난방용 주연료인 연탄의 연소특성의 규명을 위한 기본 모델로서 일차적으로 형상을 단순화한 중공 원통형 고체연료의 연소모델을 개발하여 고체연료의 열분해 및 열분해 가스의 연소현상을 이론적으로 고찰하여 고체연료의 연속특성을 규명한다.

충격기류식 여과집진기의 내부 유동 시뮬레이션 해석을 통한 압력손실 예측 (Prediction of Pressure Drop Using the Internal Flow Simulation of Pulse Air Jet Bag Filters)

  • 장경민;정은상;서정민
    • 한국환경과학회지
    • /
    • 제29권5호
    • /
    • pp.457-468
    • /
    • 2020
  • With continuous industrial development, the types, and amount of particulate matter (PM) have been increasing. Since 2018, environmental standards regarding PM have become more stringent. Pulse air jet bag filters are suitable for PM under the 20 ㎛ and, can function regardless of size, concentration and type. Filtration velocity and shape are important factors in the operation and design of the pulse air jet bag filters however, few established studies support this theory. In this research, numerical simulations were conducted based on experimental values and, several methods were employed for minimizing the pressure drop. In the pilot system, as the inlet duct velocity was faster than 19 m/sec, flow was not distributed equally and, re-entrainment occurred due to the hopper directional vortex. The multi-inlet system decelerated the hopper directional vortex by 25 ~ 30%, thereby decreasing total pressure drop by 6.6 ~ 14.7%. The guide vane system blocked the hopper directional vortex, which resulted optimal vane angle of 53°. The total pressure of the guide vane system increased by 0.5 ~ 3% at 1.5 m/min conditions. However, the filtration pressure drop decreased by 4.8 ~ 12.3% in all conditions, thereby reducing the operating cost of filter bags.

파력발전용 횡류형 수력터빈의 성능 및 내부유동 (Performance and Internal Flow of a Cross-Flow Type Hydro Turbine for Wave Power Generation)

  • 최영도;조영진;김유택;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권3호
    • /
    • pp.22-29
    • /
    • 2008
  • Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil and nuclear-fueled power plants to meet establishment of countermeasures against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power conversion system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the internal flow and performance characteristics of a cross-flow type hydro turbine, which will be built in a caisson for wave power generation. Numerical simulation using a commercial CFD code is conducted to clarify the effects of the turbine rotation speed and flow rate variation on the turbine characteristics. The results show that the output power of the cross-flow type hydro turbine with symmetric nozzle shape is obtained mainly from Stage 2. Turbine inlet configuration should be designed to obtain large amount of flow rate because the static pressure and absolute tangential velocity are influenced considerably by inlet flow rate.

미세채널 워터블록의 유입부 형상에 따른 유량분배 및 열유동 특성 (Flow Distribution and Heat Transfer Characteristic of the Microchannel Waterblock with Different Shape of Inlet)

  • 최미진;권오경;윤재호
    • 설비공학논문집
    • /
    • 제21권7호
    • /
    • pp.386-393
    • /
    • 2009
  • The present study has been studied on a thermal and flow characteristic of the microchannel waterblock with flow distributions in each channels. Results of a numerical analysis using the CFX-11 are compared with results of an experiment. Numerical analysis and experiment are conducted under an input power of 150 W, inlet temperature of $20^{\circ}C$ and mass flow rates of $0.7{\sim}2.0$ kg/min. Base temperature and pressure drop are investigated with standard deviations of mass flow rates in each channels of samples. The flow distribution and j/f factor of the sample 4 is increased by about 65.7% and 42.6%, compared to that of the reference model sample 3.