• Title/Summary/Keyword: Inlet pipe

Search Result 253, Processing Time 0.021 seconds

CFD APPLICATION TO THE REGULATORY ASSESSMENT OF FAC-CAUSED CANDU FEEDER PIPE WALL THINNING ISSUE

  • Kang, Dong-Gu;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.37-48
    • /
    • 2008
  • Flow fields inside feeder pipes have been simulated numerically using a CFD (computational fluid dynamics) code to calculate the shear stress distribution, which is the most important factor in predicting the local regions of feeder pipes highly susceptible to FAC (flow-accelerated corrosion)-induced wall thinning. The CFD approach, with schemes used in this study, to simulate the flow situations inside the CANDU feeder pipes has been verified as it showed a good agreement between the investigation results for the failed feedwater pipe at Surry unit 2 plant in the U.S. and the CFD calculation. Sensitivity studies of the three geometrical parameters, such as angle of the first and second bends, length of the first span between the grayloc hub and the first bend, and length of the second span between the first and the second bends have been performed. CFD analysis reveals that the local regions of feeder pipes of Wolsung unit 1 in Korea, on which wall thickness measurements have been performed so far, are not coincident with the worst regions predicted by the present CFD analysis located in the connection region of straight and bend pipe near the inlet part of the bend intrados. Finally, based on the results of the present CFD analysis, a guide to the selection of the weakest local positions where the measurement of wall thickness should be performed with higher priority has been provided.

The Effect of Different Inflows on the Unsteady Hydrodynamic Characteristics of a Mixed Flow Pump

  • Yun, Long;Dezhong, Wang;Junlian, Yin;Youlin, Cai;Chao, Feng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • The problem of non-uniform inflow exists in many practical engineering applications, such as the elbow suction pipe of waterjet pump and, the channel head of steam generator which is directly connect with reactor coolant pump. Generally, pumps are identical designs and are selected based on performance under uniform inflow with the straight pipe, but actually non-uniform suction flow is induced by upstream equipment. In this paper, CFD approach was employed to analyze unsteady hydrodynamic characteristics of reactor coolant pumps with different inflows. The Reynolds-averaged Naiver-Stokes equations with the $k-{\varepsilon}$ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The complicated structure of channel head induces the inlet flow non-uniform. The non-uniformity of the inflow induces the difference of vorticity distribution at the outlet of the pump. The variation law of blade to blade velocity at different flow rate and the difference of blade to blade velocity with different inflow are researched. The effects of non-uniform inflow on radial forces are absolutely different from the uniform inflow. For the radial forces at the frequency $f_R$, the corresponding amplitude of channel head are higher than the straight pipe at $1.0{\Phi}_d$ and $1.2{\Phi}_d$ flow rates, and the corresponding amplitude of channel head are lower than the straight pipe at $0.8{\Phi}_d$ flow rates.

Flow Characteristics and Optimal Design for RDT Sparger (원자로배수탱크내 Sparger에 대한 유동특성 및 최적설계)

  • Kim, Kwang-Chu;Park, Man-Heung;Park, Kyoung-Suk;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1390-1398
    • /
    • 1999
  • A numerical analysis for ROT sparger of PWR(Pressurized Water Reactor) is carried out. Computation is performed to investigate the flow characteristics as the change of design factor. As the result of this study, RDT sparger's flow resistance coefficient is K=3.53 at the present design condition if engineering mar&in is considered with 20%, and flow ratio into branch pipe is $Q_s/Q_i=0.41$. Velocity distribution at exit is not uniform because of separation in branch pipe. In the change of inlet flow rate and section area ratio of branch pipe for main pipe, flow resistance coefficient is increased as $Q_s/Q_i$ decreasing, but in the change of branch angle and outlet nozzle diameter of main pipe, flow resistance coefficient is decreased as $Q_s/Q_i$ decreasing. As the change rate of $Q_s/Q_i$ is the larger, the change rate of flow resistance coefficient is the larger. The change rate of pressure loss is the largest change as section area ratio changing. The optimal design condition of sparger is estimated as the outlet nozzle diameter ratio of main pipe is $D_s/D_i=0.333$, the section area ratio is $A_s/A_i=0.2$ and the branch angle is ${\alpha}=55^{\circ}$.

Heat Recovery Characteristics of the Exhaust Heat Recovery System with Heat Pipe Unit Attached to the Hot Air Heater in the Greenhouse (히트파이프를 이용한 온풍난방기 배기열회수 시스템의 열회수 특성)

  • Kang, K. C.;Kim, Y. J.;Ryou, Y. S.;Baek, Y.;Rhee, K. J.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.441-448
    • /
    • 2001
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat capacity of the oil burred. In order to recover the heat of this exhaust gas and to use for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The system consisted of a heat exchanger made of heat pipes, ø15.88${\times}$600mm located in the rectangular box of 675(L)${\times}$425(W)${\times}$370(H)mm, an air suction fan and air ducts. The number of heat pipe was 60, calculated considering the heat exchange amount between exhaust gas and air and heat transfer capacity of a heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/h depending on the inlet air temperature of 12 to -12˚at air flow rate of 1.100㎥/h. The temperature of the exhaust gas left the heat exchanger dropped to 100$^{\circ}C$ from 270$^{\circ}C$ after the heat exchange between the suction air and the exhaust gas.

  • PDF

Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis (3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구)

  • 진봉용;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

Effect of Frost and Defrost on the Operating Characteristics of Refrigeration System (착상과 제상이 냉동장치의 운전특성에 미치는 영향)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.5-10
    • /
    • 2010
  • This study was investigated the effect on operating characteristics of apparatus according to frosting and defrosting to develop of new defrosting equipment. The results showed as following. Frost was almost removed using the defrosting equipment with roll brush type that defrosting is possible under operating condition. Also, the temperature of compressor inlet, evaporator inlet and outlet showed higher value because of heat transfer resistance of cooling pipe frost comparing with defrosting condition. And the compressor work showed 10% lower and COP was presented 24% higher values than defrosting condition. Therefore, defrosting for cooling coil of refrigeration and low temperature storage was effected on operation and performance characteristics of equipment. This highly effects on real refrigeration apparatus which is operated in year-around.

Simulation of the single-cylinder 2-stroke cycle compression ignition engine (단기통 2사이클 압축점화기관의 시뮬레이션)

  • 유병철;김정순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.62-74
    • /
    • 1986
  • The simulation of power cycle and unsteady gas exchange processes in the inlet and exhaust systems of the single-cylinder 2-stroke cycle compression ignition engine was studied in this paper. In power cycle process, the single-zone model proposed by Whitehouse and Way was used, and the convective and radiative heat transfer from cylinder contents to surroundings was considered. To solve the equations for gas exchange process, the generalized method of characteristics including area change, friction, heat transfer and entropy gradients was used. Also with the path line calculation, the entropy change along the path line and the variation of specific heat due to the change of temperature and the composition of cylinder gas were considered. As a result of the simulation, the change of pressure and temperature in the cylinder against the crank angle, the rate of net heat release, and the change of properties at each point in the inlet and exhaust pipe against the crank angle were obtained. The engine performances under various operating conditions were also calculated.

  • PDF

Flow Uniformity Analysis of DOC-DPF System using CFD (CFD를 활용한 DOC-DPF 조합의 유동 균질도 분석)

  • Kim, Taehoon;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.122-129
    • /
    • 2019
  • Flow uniformity in aftertreatment system is an important factor in determining uniform catalytic reaction and filtration. In this study, variety types of DOC-DPF system design were analyzed to increase flow uniformity. For this analysis, ANSYS Fluent was used with porous media setup for DOC and DPF. Turbulent flow was modeled by standard $k-{\varepsilon}$ model excepting porous media. Uniformity index was utilized to evaluate the flow uniformity quantitatively. Reference design showed low velocity region because two large vortex were generated before baffle. When radius of DOC-DPF system was increased, exhaust pressure acting on the inlet decreases and velocity distribution was shifted to one side. When inlet pipe was set to axial center of DOC-DPF system velocity distribution was symmetric. However, flow was not dissipated until the front end of DOC and showed higher uniformity index. When the volume of DOC was reduced while fixed volume of entire DOC-DPF system and baffle plate is located downstream of the DOC-DPF system, there was improvement in uniformity index.

Cavitation Surge in a Small Model Test Facility simulating a Hydraulic Power Plant

  • Yonezawa, Koichi;Konishi, Daisuke;Miyagawa, Kazuyoshi;Avellan, Francois;Doerfler, Peter;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.152-160
    • /
    • 2012
  • Model tests and CFD were carried out to find out the cause of cavitation surge in hydraulic power plants. In experiments the cavitation surge was observed at flow rate, both with and without a surge tank placed just upstream of the inlet volute. The surge frequency at smaller flow rate was much smaller than the swirl mode frequency caused by the whirl of vortex rope. An unsteady CFD was carried out with two boundary conditions: (1) the flow rate is fixed to be constant at the volute inlet, (2) the total pressure is kept constant at the volute inlet, corresponding to the experiments without/with the surge tank. The surge was observed with both boundary conditions at both higher and lower flow rates. Discussions as to the cause of the surge are made based on additional tests with an orifice at the diffuser exit, and with the diffuser replaced with a straight pipe.

DESIGN, CONSTRUCTION AND ACOUSTIC PERFORMANCE OF A SOUND-POOOF ENCLOSURE FOR DIESEL GENERATOR-SET

  • Bansal, A.S.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.662-667
    • /
    • 1994
  • This paper presents the design and construction details of a soundproof enclosure for housing 20 KVA diesel generator-set. As the generator had to be installed close to the hospital building, it was desirable to reduce the transmission of noise by housing the generator in such an enclosure. The diesel engine being an air cooled one, it was essential to supply fresh air into the enclosure for its cooling. Forced inflow of air is provided through an inlet duct located in such a way that the incoming fresh air is thrown close to the inlet of cooling fan of the engine. The high velocity air stream, which heats up while passing over the engine head, escapes to the atmosphere through a rectangular outlet duct with enlarges inlet that receives hot air from the engine. The air ducts were designed specially and have been provided with acoustic lining for sound absorption. The masonary enclosure has been provided with double glazed fixed windows and double doors. The exhaust pipe of the engine fitted with a muffler has been taken out through the enclosure wall facing away from the hospital. Acoustic performance studies conducted in terms of attenuation provided by the enclosure at different frequencies have also been presented and discussed. The noise control measures adopted for building the sound-proof enclosure have been found to be quite effective as the noise levels inside the hospital building are now within the acceptable limits.

  • PDF