• Title/Summary/Keyword: Inlet Valve

Search Result 236, Processing Time 0.02 seconds

Opening Characteristics of a Main Oxidizer Shut-off Valve at Different Valve Inlet Pressures (밸브 입구 압력 변화에 따른 연소기 산화제 개폐밸브 열림 특성)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.801-807
    • /
    • 2020
  • Opening characteristics of a main oxidizer shut-off valve at different valve inlet pressures have been experimentally investigated. The pilot pressure at the moment of the valve opening increases linearly with increasing the valve inlet pressure and the increased pilot pressure reduces the valve travel time. As the pilot pressure increases at the moment of valve opening, the time to start opening the valve is delayed resulting in increasing the valve opening time. With the increment of the valve inlet pressure, the valve opening time is mainly determined by the time required for the pilot pressure to start opening the valve. Therefore the design of a pilot gas supply system can readily control the valve inlet pressure at the valve opening as well as the amount of oxidizer supplied to a combustion chamber during the engine startup.

A Study on Exhaust Gas Characteristics and Engine Performance of EGR Valve Installed Engine for Development of EGR Valve Test System (EGR 밸브 평가 장치 개발을 위한 EGR 장착 엔진 성능 및 배출 가스 특성 연구)

  • Na, D.H.;Ko, C.S.;Seo, H.J.;Lee, C.E.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.52-57
    • /
    • 2012
  • In this study, in order to understand contents and ranges of design for the EGR Valve test system for improving quality and performance of EGR Valve, engine performance and exhaust gas characteristic of 3L-class diesel engine was analyzed. Experimental operation of engine performance test was performed with 50% engine load and 20% and 100% opening ratio of EGR Valve. From test of performance and exhaust gas characteristic of engine, torque output of engine and temperature and pressure of inlet and outlet of EGR Valve were measured. As a result, for design of EGR Valve test system, input fluid flow of EGR Valve must be set the same amount with exhaust gas flow that was below of engine speed of 2,500 rpm, and temperature of inlet of EGR Valve must be set under about $510^{\circ}C$. And the difference of temperature between inlet and outlet of EGR Valve must be over than about $200^{\circ}C$. Exhaust gas of inlet and outlet of EGR Valve were under 1 bar that was not considerable, and the difference of pressure between inlet and outlet of EGR Valve were under 1 bar that could not effect on mechanical operation of EGR Valve.

Study on Structural Safety Analysis of EGR Valve (EGR Valve의 구조 안전성 해석에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.528-534
    • /
    • 2011
  • This study analyzes thermal stress and durability fatigue on the modelling of EGR valve. In case of 10% opening at its inlet, the minimum temperature gets cool as 3 times as inlet temperature. The maximum equivalent stress becomes lowest as the value of $2.6274{\times}109$ Pa and fatigue life becomes highest as 23.657 Cycle. But the minimum temperature gets cool as 2.2 times as inlet temperature in case of 50% opening at its inlet. The equivalent stress becomes higher and fatigue life becomes lower than in case of 10% opening. In case of 100% opening at its inlet, the minimum temperature gets cool as 0.2 times as inlet temperature. The equivalent stress becomes lower and fatigue life becomes higher than in case of 50% opening. Maximum equivalent stress and total deformation are shown at the closing of EGR valve by the pressure of inflow gas. The structural analysis result of this study can be effectively utilized with the design of EGR valve by investigating prevention and durability against its damage.

A Study on the Flow Analysis of Impeller type Measuring Valve according to Differential Pressure at Inlet and Outlet (임펠러 타입 계량 밸브 입·출구 차압에 따른 유동해석에 관한 연구)

  • Tea-Joon Kim;Chung-Seob Yi;Chi-Woo Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.381-387
    • /
    • 2023
  • This study conducts the flow analysis on the basis of the impeller RPM of water measuring valve and differential pressure at valve inlet and outlet. The software used for the flow analysis is STAR-CCM+. In terms of the structure of the measuring valve, it has an impeller installed inside, and a metering chamber has inlet and outlet holes. The flow analysis on the water measuring valve drew the following conclusions: The flow rate and flow coefficient distribution according to the impeller RPM and differential pressure were on the linear increase. Regarding the flow field in the valve, the increased differential pressure had the highest velocity distribution, and complex flow field was generated in the measuring chamber. In particular, since the path between the inlet and outlet holes in the measuring chamber and the valve body was narrow, there was a section that had flow field interference. Given that, it showed the feature of the valve used for water measuring on the basis of the impeller RPM.

Failure Analysis of an Inlet Pipe of a Governor Valve in a Steam Turbine of a District Heating System (지역난방 증기 터빈 내 조속기 밸브 Inlet pipe 파손 원인 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2022
  • The objective of this study was to perform failure analysis of an inlet pipe located in a governor valve of a steam turbine in a district heating system. During the operation, the temperature of the governor valve was increased to as high as ~500 ℃, which induced thermal expansion of the inlet pipe along both axial and radial directions. While the inlet pipe did not have contact with the valve seat, the side plane of the upside was constrained by the casing part, which led the inlet pipe to experience stress field in the form of fatigue and creep. The primary crack was initiated at about 30 mm below the top where the complex stress field was anticipated. These results suggest that the main failure mechanism is a combination of thermal fatigue and creep during the operation supported by the observation of apparent beach marks on the fracture surface and pores near the cracks, respectively.

Effect of Inlet Valve Angle on In-Cylinder Swirl. Generation Characteristics(II) (흡입밸브 각이 실린더 내 와류 발생 특성에 미치는 영향(II))

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.42-48
    • /
    • 2009
  • This paper is the second of 2 companion papers which investigate in-cylinder swirl generation characteristics according to inlet valve angle. Two DOHC 4 valve engines, one has wide intake valve angle and the other has narrow valve angle, were used to compare the characteristics of swirl motion generation in the cylinder. One intake port was deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake stroke. The results show that the flow patterns of narrow valve engine are much more stable and well arranged compared with the normal engine over the entire intake and compression stroke except early intake stage, and very strong swirl motion is generated at the end of compression stage in this engine nevertheless using straight port which is unfavorable for swirl generating. In the wide valve angle one, however, strong swirl motion induced during intake stroke is destroyed as the compression progresses.

Effect of Inlet Valve Angle on In-Cylinder Swirl Generation Characteristics(I) (흡입밸브 각이 실린더 내 와류 발생 특성에 미치는 영향(I))

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.148-156
    • /
    • 2008
  • This paper is the first of 2 companion papers which investigate in-cylinder swirl generation characteristics according to inlet valve angle. Two DOHC 4 valve engines, one has wide intake valve angle and the other has narrow valve angle, were used to compare the characteristics of swirl motion generation in the cylinder. One intake port was deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake stroke. The results show that the stronger swirl motion is observed in wide valve angle engine at the early intake stage; however, the swirl motion is gradually distorted by the intake flow component passing through valve area near the cylinder wall as the stroke proceeds. The tumble motion also does so in wide angle. On the contrary, the swirl and tumble motions, which are not clear at the initial stage, become better and better arranged as the piston goes down and up again after bottom dead center.

Prediction of Cavitation Occurrence in a Cryogenic Butterfly Valve by Flow Velocity (극저온 버터플라이 밸브의 유속에 따른 캐비테이션 발생 예측)

  • Kim, Seong-Dong;Kim, Beom-Seok;Choi, Young-Do;Lee, Young-Eo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.923-930
    • /
    • 2008
  • The butterfly valve is widely used in the industrial field as an on-off or a flow control valve. When the butterfly valve is used as a flow control valve. cavitation sometimes occurs in the range of high flow rate because of the small valve opening. Therefore. the pressure loss and the cavitation characteristics are investigated by use of a commercial CFD code. The results show that the possibility of cavitation occurrence in the cryogenic butterfly valve is very high in the case of valve opening angle below 10 degree and incident velocity over 6m/s. By increasing the inlet velocity at 10 degree of valve opening angle. the value of loss coefficient increased. However. by increasing the inlet velocity at 50 degree of valve opening angle. the value of loss coefficient decreased.

Part Load Performance Characteristics according to Inlet Valve Angle (흡입 밸브 각도에 따른 엔진 부분부하 성능 특성)

  • Lee, Jung-Man;Lee, Jae-Won;Kim, Hyeong-Sig;Kwon, Soon-Tai;Park, Chan-Jun;Ohm, In-Yong
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.161-166
    • /
    • 2008
  • This paper searched through mixture ratio response test whether exert effect that is some in part load performance of engine according to inlet valve angle in gasoline engine. Engines that inlet valve angle is narrow decreased quantity of NOx among exhaust gas than engine that inlet valve angle is wide, and ignition timing was retard, and fuel consumption improved a little. That quantity of NOx among exhaust gas decreases and ignition timing was retard can judge that fast burning occurred. Fast burning can decrease output decline and misfire that can happen at lean burning. Can be judged by thing which engine's combustion performance improves if inlet valve angle is narrow if examine test result.

  • PDF

Analysis on Volumetric Efficiency and Torque Characteristics Using Inlet Port Pressure in SI Engines (흡기포트압력을 이용한 SI엔진의 체적효율 및 토크 성능 분석)

  • 이영주;홍성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1408-1418
    • /
    • 1992
  • The valve timing and intake system in SI engine is chosen in order to get the maximum performance at the target rpm. This is a compromise and the performance reduction is expected in a certain rpm range. Therefore, to accomplish the possible engine capacity all over the operation ranges, it is required to investigate the effects of intake system and valve timing on engines more thoroughly. In this paper, it was attempted to examine closely the combined effects on the torque and the volumetric efficiency due to the change of valve timing and intake system dimensions. For this, the inlet port pressure was chosen as a primary parameter to represent engine performance characteristics together with surge tank pressure and induction pressure as secondaries. The inlet port pressure was analyzed in connection with both the secondaries and the performance data. Especially the relation between the inlet port pressure and the torque and volumetric efficiency was investigated on the operating conditions. In this experiment, it was acquired that the performances at specific rpm range could be improved by the combinations of valve timing and intake system. Then it was verified that pressure at a intake system contained useful data for the engine performance. By the analysis of inlet port pressure with the others, it was obtained that the properties of the torque and the volumetric efficiency due to the change of valve timing and intake conditions were able to be defined by the average and the maximum inlet port pressures, the pressure near before the intake valve closing(IVC) point as well as the pressure at IVC point during the intake valve opening duration. These results could be applied to almost all over the experimental conditions.