• Title/Summary/Keyword: Inlet Gas Temperature

Search Result 461, Processing Time 0.027 seconds

Development of a Polytropic Index-Based Reheat Gas Turbine Inlet Temperature Calculation Algorithm (폴리트로픽 지수 기반의 재열 가스터빈 입구온도 산출 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.483-494
    • /
    • 2023
  • Recently, gas turbine generators are widely used for frequency control of power systems. Although the inlet temperature of a gas turbine is a key factor related to the performance and lifespan of the device, the inlet temperature is not measured directly for reasons such as the turbine structure and operating environment. In particular, the inlet temperature of the reheating gas turbine is very important for stable operation management, but field workers are experiencing a lot of difficulties because the manufacturer does not provide information on the calculation formula. Therefore, in this study, we propose a method for estimating the inlet temperature of a gas turbine using a machine learning-based linear regression analysis method based on a polytropic process equation. In addition, by proposing an inlet temperature calculation algorithm through the usefulness analysis and verification of the inlet temperature calculation model obtained through linear regression analysis, it is intended to help to improve the level of reheat gas turbine combustion tuning technology.

Development of a Performance Diagnosis Program for Gas Turbines Using Turbine Inlet Temperature Correction (터빈입구온도 보정기법을 적용한 가스터빈 성능진단 프로그램 개발)

  • Lee, Jae Hong;Kang, Do Won;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.32-40
    • /
    • 2017
  • In this study, an in-house program to analyze the performance degradation for gas turbines is developed using MATLAB and is validated using commercial software. This program consists of design and off-design calculations. The results of design calculation is used for reference values of off-design calculation. The off-design calculation is composed of measured and expected performance analyses, and turbine inlet temperature correction. In general, performance degradation is analyzed by comparing the results of measured and expected performance analysis. However, if gas turbine performance degrades, turbine inlet temperature might increase due to the general control logic to comply with the power demand. Therefore, it is required to consider the deviation of turbine inlet temperature from the normal value in the performance diagnosis to analyze the performance degradation exactly. In this study, a special effort is given to the correction of turbine inlet temperature. The accuracy of the developed program is confirmed by comparison with commercial software, and its capability of performance diagnosis using the turbine inlet temperature correction is demonstrated.

Numerical Study on the Application of High Temperature Catalytic Combustion to a Gas Turbine (고온촉매연소의 가스터빈 적용에 관한 수치적 연구)

  • Kim, Hyung-Man;Jeun, Ho-Sig;Jang, Seok-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.989-994
    • /
    • 2001
  • Numerical simulations of high temperature catalytic combustion have been performed for the application to a gas turbine combustor. Dependences of inlet temperature and pressure on the distributions of temperature and species concentrations were investigated using plug flow model with detailed homogeneous and heterogeneous chemistries of methane-air mixtures. Honeycomb typecombustor deposited with Pt catalyst of 100mm in length and 26mm in diameter is used. The results show that rapid increase of temperature profile occurs earlier with the increase of inlet temperature and the decrease of inlet pressure. The condition which catalytic combustion is stabilized exists at certain range of inlet temperature and pressure. The state of catalytic combustion is also confirmed by the distributions of species concentration.

  • PDF

A Study on $SO_2$Removal in Flue Gas by Semidry Flue Gas Desulfurization Method (반건식 배연탈황법에 의한 연소 페가스 중 $SO_2$제거에 관한 연구)

  • Song, Ho-Cheol;Lee, Yun-Gi;Park, Jin-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.273-280
    • /
    • 1998
  • The investigation on the removal of 502 gas fro.In flue gas which causes serious air pollution was made by using a semi dry flue gas desulfurization method. Experiments were carried out as a function of process variables which would affect SO2 removal efficiency. Process variables inclilded SO2 inlet concentration, inlet temperature of simulated flue gas, sorbent weight fraction, and volume flow rate of sorbent slurry. In this study, used sorbent was Ca(OH), and simulated flue gas was prepared by mixing pure SO2 gas with air. Experimental conditions were varied at 140~18$0^{\circ}C$ of inlet temperature of the simulated flue gas, 500~2000ppm of inlet SO2 concentration, 0.4~1.0% of sorbent concentration, and 10~25 mL/min of flow rate of sorbent slurry. Among process variables, inlet concentration of SO2 was found to be the most significant factor to affect SO2 removal efficiency. The concentration of Ca(OH2) had a lower effect on SO2 removal than SO2 inlet concentration removal amount was 0.108, 0.141, 0.153 g SO2/g Ca(OH)2 respectively- As 200 mmol of HNO3 was added into slurry to improve removal efficiency, initial pH was maintained and solubility of slurry increased, so that removal efficiency elevated. Adding over 200 mmol of HNO3 into slurry caused removal efficiency lower. Therefore it could be concluded the optimum was 200 mmol of HNO3 input.

  • PDF

Improvement of Gas Turbine Performance Using LNG Cold Energy (액화천연가스의 냉열을 이용한 가스터빈의 성능향상)

  • Kim, Tong Seop;Ro, Sung Tack;Lee, Woo Il;Choi, Mansoo;Kauh, Sang Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.653-660
    • /
    • 1999
  • This work describes analysis on the effect of inlet air cooling by the cold energy of liquefied natural gas(LNG) on the performance of gas turbines. Gas turbine off-design analysis program to simulate the influence of compressor inlet temperature variation is prepared and an inlet air cooler is modeled. It is shown that the degree of power augmentation is much affected by the humidity of inlet air. If the humidity is low enough, that is the water content of the air does not condense, the temperature drop amounts to $18^{\circ}C$, which corresponds to more than 12% power increase, in case of a $1350^{\circ}C$ class gas turbine with methane as the fuel. Even with 60% humidity, about 8% power increase is possible. It is found that even though the fuel contains as much as 20% ethane in addition to methane, the power improvement does not change considerably. It is observed that if the humidity is not too high, the current system is feasible oven with conceivable air pressure loss at the inlet air cooler.

Effects of Turbine Inlet Temperature on Performance of Regenerative Gas Turbine System with Afterfogging

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.141-148
    • /
    • 2009
  • Afterfogging of the regenerative gas turbine system has an advantage over inlet fogging in that the high outlet temperature of air compressor makes the injection of more water and the recuperation of more exhaust heat possible. This study investigates the effects of turbine inlet temperature (TIT) on the performance of regenerative gas turbine system with afterfogging through a thermodynamic analysis model. For the standard ambient conditions and the water injection ratios up to 5%, the variation of system performance including the thermal efficiency is numerically analyzed with respect to the variations of TIT and pressure ratio. It is also analyzed how the maximum thermal efficiency, net specific work, and pressure ratio itself change with TIT at the peak points of thermal efficiency curve. All of these are found to increase almost linearly with the increases of both TIT and water injection ratio.

Study on Characteristics of Spray Combustion for Various Operation Conditions in a Gas Turbine Combustor (가스터빈 연소기 내 운전조건 변화에 따른 분무연소 특성 연구)

  • Cho, S.P.;Kim, H.Y.;Park, S.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.3-10
    • /
    • 2002
  • In this work, numerical parametric studies on spray combustion have been conducted. In simulation of turbulence, RNG ${\kappa}-{\varepsilon}model$ is adopted. Initial spray distribution is specified by Rosin-Rammler distribution function. Eddy break-up model is adopted as a combustion model. The parameters considered are inlet air temperature, swirl number, and SMD. With higher inlet air temperature, the axial velocities are increased and penetration of primary jet is stronger than that of lower inlet air temperature and temperature at the exit of combustor is more uniform. Combustion efficiency is improved with high inlet air temperature. The effect of swirl number on flow field is not significant. It affect only recirculation zone. So temperature at upstream of combustor is influenced. Combustion efficiency deteriorate as SMD of fuel spray increase.

  • PDF

The Performance Evaluation of a Gas Turbine Combustor (가스터빈 연소기의 성능평가)

  • Ahn, Kook-Young;Kim, Han-Seok;Ahn, Jin-Hyuk;Pae, Hyoung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1294-1299
    • /
    • 2000
  • The combustion characteristics have been investigated to develop the 50 kW-class gas turbine combustor. The combustor design program was developed and applied to design this combustor. The combustion air which has the temperature of 45, 200, $300^{\circ}C$ were supplied to combustor for elucidating the effect of inlet air temperature on CO, NOx emissions and flame temperature. The exit temperature and NO were increased and CO was decreased with increasing inlet air temperature. Also, the effect of equivalence ratio was considered to verify the combustor performance. The emissions of CO and NO with inlet air temperature can be analyzed qualitatively by measuring the temperature inside the combustor. The combustion performance with fuel schedule was evaluated to get the informations of the starting and part loading process of gas turbine. The combustion was stable above the equivalence ratio of 0.18. The pattern factor which is the important parameter of combustor performance was satisfied with the design criterion. Consequently the combustor was proved to meet the performance goal required for the target gas turbine system.

A study of Overall Combustion Characteristics according to the Air Preheated Temperature in a Hybrid/Dual Swirl Jet Combustor (하이브리드/이중 선회제트 연소기에서 공기 예열온도에 의한 배출 특성 연구)

  • Choi, Inchan;Jo, Junik;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.149-152
    • /
    • 2012
  • The laboratory experiments have been conducted to investigate the effects of air preheated temperature on the emission characteristics by a model gas turbine burner with a hybrid/dual swirl jet flames configuration. The concentration of NOx and CO emissions, and flue gas temperature at combustor exit were measured with varying the equivalence ratio for different air preheated temperatures of 300, 400, 500K at atmospheric pressure. It was overall shown that the NOx and CO emissions, and flue gas temperature were decreased according to the decreasing of equivalence ratio due to the effects of lean premixed combustion regardless of the air preheated temperature. Experimental results of a lean premixed flames configuration indicated that the NOx emission was increased with higher inlet air temperature and air flow rate, which is attributed to the increasing of flue gas temperature and heat release related to the thermal NOx mechanism. But the CO emission was shown the opposite tendency, that is, the CO emission was decreased with increasing of inlet air temperature and flow rate.

  • PDF

Numerical Simulation of Duct Flow about Shape and Arrangement of Inlet Guide Vane to Increase the Temperature Uniformity (전치 가이드 베인 배치 및 형상에 따른 보일러 입구 온도분포의 수치해석 연구)

  • Lee, Su-Yun;Shin, Seung-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1172-1177
    • /
    • 2008
  • Diverging channel from gas burner exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW steam supply and power generation system. Three different test geometries have been chosen for the numerical simulation. The existing design for 300 kW HRSG system (CASE B) has been improved by geometry and position changes of inlet guide vanes along with gas velocity entrance angle at the diverging channel inlet (CASE C). Both cases has been compared with the case where hot combustion gas is directly injected without any guide vanes (CASE A). Improved design shows overall uniform velocity and temperature distribution compared to existing design.

  • PDF