• Title/Summary/Keyword: Inlet Duct

Search Result 203, Processing Time 0.023 seconds

Thermal-Fluid Analysis with Flow Loss Coefficient on the Inlet and Exhaust Duct of Wheel-Loader (휠로더 흡배기구의 유동손실계수를 적용한 열유동해석)

  • Jeong, Chan-Hyeok;Lee, Jae-Seok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In this study, we verify the accurate numerical analysis and simplify the perforated plate of inlet and exhaust duct using porous media for the cost reduction and the efficiency improvement of thermal-fluid analysis to evaluate cooling performance of wheel-loader. The flow loss coefficient of the perforated plate is defined by the experiment result. To define analytically the flow loss coefficient of the perforated plate, we calculate the pressure drop of unit-cell and compare to experiment result. Finally, we compare the heat balance test and the simplified simulation result on the inlet and exhaust duct of wheel-loader. After this study, we verify the applicability of the simplified analysis method on the inlet and exhaust duct of wheel-loader. And, foundation which can carry out effectively the evaluation and improvement for cooling performance of wheel-loader is prepared.

The Effects of Operational Factors On the Performance of Husk Separator (왕겨풍구의 성능(性能)에 영향(影響)을 미치는 작동요인(作動要因)에 관(關)한 연구(硏究))

  • Chang, Hyun Taik;Noh, Sang Ha;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.1
    • /
    • pp.22-33
    • /
    • 1984
  • Husk separator is an indispensable equipment in rice milling plants. However, any basic research on the designing and operating criteria of the husk separator have rarely been conducted in Korea. According to the survey results reported recently, grain loss occurs in the process of rice husk separation at custom rice milling plants in Korea and the performance of husk separator has also not been identified. With this regard this study was conducted with a typical commercial husk separator to investigate the effect of the operational factors such as feed rate, blower speed and opening ratio on the velocity distribution in the air duct and the performance of the separator. The results are summerized as follows: 1. The average wind velocity in the primary air duct increased linearly with the blower rpm and the size of air inlet port in both cases of double type and single type operations. 2. The coefficient of variation in the horizontal wind velocities in the primary air duct was the minimum when the opening ratio was 0.22 ($0.052m^2$ of air inlet port) in both cases of single type and double type operations regardless of the blower speeds used in this test. The average wind velocity at the upper part of air duct was greater by 2-5 m/s than the velocity at the bottom part in double type operation. In case of single type operation, however, the average velocity in the middle part was greater than the upper or bottom part when the opening ratio was greater than 0.74. 3. The relationship between the overall effectiveness of separation(Ed for double type and Es for single type) and the average wind velocity (Va) in the primary air duct was expressed in the following quadratic functions. $$Ed=-190.84+106.18Va-10.052Va^2$$ ($r^2$ = 0.97782) $$Es=-223.76+106.23Va-9.1935Va^2$$ ($r^2$ = 0.97029) The average wind velocity required to obtain the overall effectiveness of separation more than 80% ranged from 4.04 m/sec to 5.84 m/sec in case of double type operation, and from 4.70 m/sec to 6.20 m/sec in case of single type. 4. An optimum wind velocity can be obtained with an increase in the blower speed or the size of air inlet port as presented in Figure 8. There was a tendency that the faster the blower speed, the narrower the control range of the air inlet port. 5. The feed rates (1850kg/hr and 2100kg/hr) adopted in this experiment did not bring about a significant difference in both the overall effectiveness of separation and the power consumption. 6. The energy consumption increased cubically with the blower speed but linearly with the size of the air inlet port. On the basis of the results described in items 1, 3, and 6, it would be more economic to adjust the size of the air inlet port larger with a relatively low blower speed than to adjust the size smaller with a relatively high speed.

  • PDF

A Numerical Study of the Turbulent Flow Characteristics in the Inlet Transition Square Duct Based on Roof Configuration (4각 안내덕트 루프형상에 의한 난류특성변화 수치해석)

  • Yoo, Geun-Jong;Choi, Hoon-Ki;Choi, Kee-Lim;Shin, Byeong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.541-551
    • /
    • 2009
  • Configuration of the inlet transition square duct (hereinafter referred to as "transition duct") for heat recovery steam generator (hereinafter referred to as "HRSG") in combined cycle power plant is limited by the construction type of HRSG and plant site condition. The main purpose of the present study is to analyze the effect of a variation in turbulent flow pattern by roof slop angle change of transition duct for horizontal HRSG, which is influencing heat flux in heat transfer structure to the finned tube bank. In this study, a computational fluid dynamics(CFD) is applied to predict turbulent flow pattern and comparisons are made to 1/12th scale cold model test data for verification. Re-normalization group theory (RNG) based k-$\epsilon$ turbulent model, which improves the accuracy for rapidly strained flow and swirling flow in comparison with standard k-$\epsilon$ model, is used for the results cited in this study. To reduce the amount of computer resources required for modeling the finned tube bank, a porous media model is used.

Numerical Study on the Thermal Entrance Effect in Miniature Thermal Conductivity Detectors (소형 Thermal Conductivity Detector의 입구열전달 거동에 대한 수치해석)

  • Kim, U-Seung;Kim, Yeong-Min;Chen, Kuan;Cheon, Won-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.439-447
    • /
    • 2002
  • The microchannel flow in miniature TCDs (thermal conductivity detectors) is investigated numerically. The solutions based on the boundary layer approximation are not very accurate in the region of the duct inlet for low Reynolds numbers. In this study, two-dimensional Navier-Stokes equations are considered to analyze the gas flow in a miniature TCD. Effects of channel size, inlet and boundary conditions on the heat transfer rate are examined. When the gas stream is not preheated, the distances for a miniature TCD to reach the conduction-dominant region for duct flow are found to be approximately two and three times the thermal entry length for duct flow with constant properties, respectively, leer constant wall temperature and constant wall heat flux boundary conditions. If the gas temperature at the channel inlet is close to the mean gas temperature in the conduction-dominant region, the entrance region is much shorter compared to other cases considered in this study.

Emission Characteristics of LP Gas Burner for the Variation of Combustion Conditions (연소조건 변화에 따른 LP가스버너의 배기특성)

  • 이병곤;오택흠
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2001
  • An experimental study was carried out to investigate the emission characteristics of LP gas burner for the Practical combustion conditions including fm voltage, inlet area, gas Pressure, emission resistance, duct length and height. The result shows that CO is almost remains constant for the emission fan voltage, but significantly increases with the reduction rate of air inlet, up to 3000ppm at 50% of reduction rate. Also, the variation of gas pressure has no effect to CO of gas boiler due to its governor which controls gas pressure secondly, but it gives an rapid increase of CO for the gas range. The emission resistance test shows that CO is suddenly increased with the reduction rate of emission duct above 70% and main burner is stopped at 90%. The reverse wind test shows that CO is suddenly increased with the air velocity above 7m/s and main burner is stopped at 9m/s. The more horizontal length of emission duct is long and the vertical height is low, CO is infinitesimally increased.

  • PDF

Probabilistic Approach for Fighter Inlet Hammershock Design Pressure (전투기 흡입구 해머쇼크 설계압력에 대한 확률론적 접근법)

  • Bae, Hyo-gil;Lee, Hoon Sik;Kim, Yun-mi;Jeong, In Myon;Lee, SangHyo;Cho, Dae-yeong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.72-78
    • /
    • 2019
  • Inlet hammershock is the critical loads condition for designing the inlet duct structure of a fighter. The sudden flow reduction in engine compressor causes inlet hammershock with high pressure. The traditional method was used to combine extreme conditions (maximum speed, sea level altitude, and cold day) to analyze this compression wave inlet hammershock pressure. However, after the 90s there have been papers that presented the probabilistic approach for the inlet hammershock to achieve the appropriate design pressure. This study shows how to analyze the inlet hammershock pressure by making practical use of the Republic of Korea Air Force real flight usage data under probabilistic approach and then analyze approximately 30% decreased inlet hammershock pressure compared with the traditional valve.

Pressure Characteristics According to the Duct Shapes of Turbo Blowers Connected in Serial (다단 블로어 덕트형상에 따른 압력특성 연구)

  • Park, Young-Bin;Jang, Choon-Man;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2010
  • Pressure characteristics according to the duct shapes of turbo blowers connected in serial have been performed to reduce pressure loss in the piping system. To analyze three-dimensional flow field in the turbo blower system, general analysis code, CFX, is introduced in the present work. SST turbulence model is applied to estimate the eddy viscosity. Throughout the numerical simulation for the turbo blower system having a various shape of a inlet guide, optimal inlet guide can be selected. It is found that the pressure loss in the piping system having the optimal inlet guide can be reduced by minimizing the inflow distortion at the upstream of the impeller. Detailed flow analysis of the blower system serially connected is also performed and analyzed.

An Experimental Study on Forced Convective Heat Transfer in a Rectangular Duct with $180^{\circ}$ Bend (직사각형단면을 갖는 $180^{\circ}$곡관에서의 강제 대류 열전달 특성에 관한 실험적 연구)

  • Moon, C.;Lee, G.H.;Choi, Y.D.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.290-301
    • /
    • 1992
  • An experimental study has been performed to investigate the characteristics of forced convective heat transfer in a rectangular duct with a 180.deg. bend. The Nusselt number of outer wall has maximum value near 105.deg. at which secondary flow is most active and the Nusselt number of inner wall has maximum value near the inlet of a duct. Near the outlet of a duct, the Nusselt number of outer wall decreases, the Nusselt number of inner wall increases and so those access each other through the influence of a straight duct attached to the end of a duct with a 180.deg. bend. Results of this experimental study would be the fundamental data when streamline curvature correction models are developed in the numerical study for forced convective heat transfer in a curved duct.

Numerical Studies on the S-Shaped Duct Flow for Compressors (압축기용 S형 덕트 유동에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.40-46
    • /
    • 2004
  • This paper is concerned with the numerical analyses of an S-shaped duct for the inter-channel between compressor spools. For the compactness and lightweight of an engine, the length of the S-shaped duct is desired to be minimized. Shortening the S-shaped duct, however, flow separation is likely to occur. Numerical investigation using a three-dimensional Navier-Stokes flow solver was performed to determine the availability of the minimization of an S-shaped duct. Computations were performed introducing the experimental data as the inlet flow condition of the OGV in determining the minimum length of the S-shaped duct. Also, the leaning effect of the OGV which assists the flow to turn radially inward was studied adopting mixing-plane method to consider the rotor/OGV interaction.

Numerical Studies on the S-Shaped Duct for Compressors (압축기용 S형 덕트에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.621-626
    • /
    • 2003
  • This paper is concerned with the numerical analyses of an S-shaped duct for the inter-channel between compressor spools. For the compactness and lightweight of an engine, the length of the S-shaped duct is desired to be minimized. Shortening the S-shaped duct however, flow separation is likely to occur. Numerical investigation using a three-dimensional Navier-Stokes flow solver has been performed to determine the availability of the minimization of an S-shaped duct. Computations are performed introducing the experimental data as the inlet flow condition of the OGV in determining the minimum length of the S-shaped duct. Also, the leaning effect of the OGV which assists the flow to turn radially inward are studied adopting mixing-plane method to consider the rotor/OGV interaction.

  • PDF